661 research outputs found

    Hydrographic Study of Peirce Island Wastewater Treatment Plant Effluent in the Piscataqua River of Portsmouth, New Hampshire: Report of Findings from the December 10 – 14, 2012 Study Period

    Get PDF
    In order to assist the New Hampshire Department of Environmental Services (NHDES) evaluate the impact of treated wastewater effluent from Peirce Island Wastewater Treatment Plant (WWTP) to the Lower Piscataqua River and Portsmouth Harbor a hydrographic dye study was conducted in December 2012 in Portsmouth, NH. Eight (8) shellfish cages with American oysters (Crassostrea virginica) and blue mussels (Mytilus edulis) were deployed both upstream and downstream of the Peirce Island WWTP in the Piscataqua River, Little Harbor, and the entrance of Little Bay. Eight (8) mini CTDs that monitor conductivity/salinity, temperature, and depth, and six (6) moored fluorometers, which measure dye tagged effluent from the Peirce Island WWTP were attached to the subsurface cages. A fifty (50) gallon mixture of Rhodamine WT dye and distilled water was injected into WWTP on December 11, 2012 for a half tidal cycle (approximately 12.4 hours). Additionally, boat tracking fluorometers connected with a mobile geographic information system (GIS) were used to measure dye levels on the surface in situ and in real time. Microbiological analyses of fecal coliform (FC), male-specific coliphage (MSC), Norovirus (NoV) genogroup I (GI) and genogroup II (GII), and Adenovirus (AdV) were conducted on WWTP influent and effluent composite samples collected with automated samplers to determine the WWTP efficiency in reducing indicator bacteria and viruses. Microbiological sampling and testing of oysters and mussels from the eight (8) sentinel cages was conducted to assess the impact of WWTP effluent on shellfish growing areas and growing area classifications. Prior to conducting the study, the assumption was that the FDA’s recommended minimum dilution of 1000:1was not applicable in this situation because the recommended dilution is based on a WWTP having at least secondary treatment. The microbiological findings in shellfish samples, wastewater samples from the Peirce Island WWTP, and the results of the dye study, confirm that a minimum of 1,000:1 dilution with respect to Peirce Island WWTP is currently not applicable for this WWTP. The FDA and NHDES recommend continued MSC testing of wastewater samples from the WWTP before and after the WWTP upgrade. The FDA and NHDES recommend a future field study after the WWTP upgrade in order to delineate the 1,000:1 dilution zone

    Degenerate Topological Edge States in Multimer Chains

    Full text link
    We propose and experimentally realize a class of quasi-one-dimensional topological lattices whose unit cells are constructed by coupled multiple identical resonators, with uniform hopping and inversion symmetry. In the presence of path-induced effective zero hopping within the unit cells, the systems are characterized by complete multimerization with degenerate 1-1 energy edge states for open boundary condition. Su-Schrieffer-Heeger subspaces with fully dimerized limits corresponding to pairs of nontrivial flat bands are derived from the Hilbert spaces. In particular, topological bound states in the continuum (BICs) are inherently present in even multimer chains, manifested by embedding the topological bound states into a continuous band assured by bulk-boundary correspondence. Moreover, we experimentally demonstrate the degenerate topological edge states and topological BICs in inductor-capacitor circuits.Comment: 6page,4figure

    In Silico Classification of Proteins from Acidic and Neutral Cytoplasms

    Get PDF
    Protein acidostability is a common problem in biopharmaceutical and other industries. However, it remains a great challenge to engineer proteins for enhanced acidostability because our knowledge of protein acidostabilization is still very limited. In this paper, we present a comparative study of proteins from bacteria with acidic (AP) and neutral cytoplasms (NP) using an integrated statistical and machine learning approach. We construct a set of 393 non-redundant AP-NP ortholog pairs and calculate a total of 889 sequence based features for these proteins. The pairwise alignments of these ortholog pairs are used to build a residue substitution propensity matrix between APs and NPs. We use Gini importance provided by the Random Forest algorithm to rank the relative importance of these features. A scoring function using the 10 most significant features is developed and optimized using a hill climbing algorithm. The accuracy of the score function is 86.01% in predicting AP-NP ortholog pairs and is 76.65% in predicting non-ortholog AP-NP pairs, suggesting that there are significant differences between APs and NPs which can be used to predict relative acidostability of proteins. The overall trends uncovered in the study can be used as general guidelines for designing acidostable proteins. To best of our knowledge, this work represents the first systematic comparative study of the acidostable proteins and their non-acidostable orthologs

    Protease‐Activatable Hybrid Nanoprobe for Tumor Imaging

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108698/1/adfm201400419.pd

    Identification of Properties Important to Protein Aggregation Using Feature Selection

    Get PDF
    Background: Protein aggregation is a significant problem in the biopharmaceutical industry (protein drug stability) and is associated medically with over 40 human diseases. Although a number of computational models have been developed for predicting aggregation propensity and identifying aggregation-prone regions in proteins, little systematic research has been done to determine physicochemical properties relevant to aggregation and their relative importance to this important process. Such studies may result in not only accurately predicting peptide aggregation propensities and identifying aggregation prone regions in proteins, but also aid in discovering additional underlying mechanisms governing this process. Results: We use two feature selection algorithms to identify 16 features, out of a total of 560 physicochemical properties, presumably important to protein aggregation. Two predictors (ProA-SVM and ProA-RF) using selected features are built for predicting peptide aggregation propensity and identifying aggregation prone regions in proteins. Both methods are compared favourably to other state-of-the-art algorithms in cross validation. The identified important properties are fairly consistent with previous studies and bring some new insights into protein and peptide aggregation. One interesting new finding is that aggregation prone peptide sequences have similar properties to signal peptide and signal anchor sequences. Conclusions: Both predictors are implemented in a freely available web application (http://www.abl.ku.edu/ProA/ webcite). We suggest that the quaternary structure of protein aggregates, especially soluble oligomers, may allow the formation of new molecular recognition signals that guide aggregate targeting to specific cellular sites

    Experimental Research on Mechanical Properties of Apple Peels

    Get PDF
    Knowledge of the mechanical properties of apple peel, as the outermost tissue of the fruit, is crucial for the designing of apple harvesting machines. In this study, longitudinal and transverse tensile tests were conducted on peels from the shadow side and sunlit side of two apple cultivars (Starkrimson and Fuji) using an electronic universal testing machine, and tear tests and puncture tests were carried out on peels of both sides as well. The stress-strain curves and tear and puncture force-deformation curves of the peels were acquired and the tensile strength, elastic modulus, failure strain tear strength, puncture strength of the peels were measured. Also, scanning electron microscope images were made. The results showed that the maximum values of tensile strength, elastic modulus, fracture strain, tear strength, and puncture strength were 2.56 MPa, 24.00 MPa, 19.92%, 0.391 kN·m-1, and 0.289 N·mm-2, respectively. The tensile strength, elastic modulus, and puncture strength values for the Starkrimson peels were higher than those for the Fuji peels from the same side. Apple peel is an anisotropic heterogeneous material. The bearing capacity of the peel depends on the number and distribution of microcracks on the surface, and the size and shape of the epidermal cells. The organization and connections between the cells determine the strength of the connections between cells

    Microstructure Effects on Electrochemical Characteristics for Plasma Spray Deposited LiFePO4 Films

    Get PDF
    The electrochemical behavior of composite electrodes used in Li ion batteries is influenced by factors such as microstructural characteristics (e.g. particle size, crystallinity, porosity etc.) and composition. For optimal performance of electrodes these factors are of utmost concern and serve as motivation for research in this field. In this report, we investigated LiFePO4 films synthesized by a novel plasma spray deposition method, which has capability for direct deposition of LiFePO4 films with carbon. This enables electrode characterizations to be carried out at the film level, without recourse to steps involving powder material handling. In this report microstructure and electrochemical properties of LiFePO4 films were investigated to elucidate their unique characteristics. Our studies show that factors such as porosity and microstructure of the films affect the electrochemical properties. The mechanical compression and thermal annealing experiments are shown to affect the electrochemical characteristics of LiFePO4 films. We show that annealing treatment leads to a drastic improvement in impedance and charge-discharge capacities for the LiFePO4 films. These treatments could serve to improve the electrode properties of porous film based materials for Li ion batteries and help us develop new film based materials for energy storage applications

    An Improved Algorithm for Retrieving Surface Downwelling Longwave Radiation from Satellite Measurements

    Get PDF
    Zhou and Cess [2001] developed an algorithm for retrieving surface downwelling longwave radiation (SDLW) based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for scenes that were covered with ice clouds. An improved version of the algorithm prevents the large errors in the SDLW at low water vapor amounts by taking into account that under such conditions the SDLW and water vapor amount are nearly linear in their relationship. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths available from the Cloud and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) product to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing and will be incorporated as one of the CERES empirical surface radiation algorithms
    corecore