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Abstract

Protein acidostability is a common problem in biopharmaceutical and other industries. However, it remains a great
challenge to engineer proteins for enhanced acidostability because our knowledge of protein acidostabilization is still very
limited. In this paper, we present a comparative study of proteins from bacteria with acidic (AP) and neutral cytoplasms (NP)
using an integrated statistical and machine learning approach. We construct a set of 393 non-redundant AP-NP ortholog
pairs and calculate a total of 889 sequence based features for these proteins. The pairwise alignments of these ortholog
pairs are used to build a residue substitution propensity matrix between APs and NPs. We use Gini importance provided by
the Random Forest algorithm to rank the relative importance of these features. A scoring function using the 10 most
significant features is developed and optimized using a hill climbing algorithm. The accuracy of the score function is 86.01%
in predicting AP-NP ortholog pairs and is 76.65% in predicting non-ortholog AP-NP pairs, suggesting that there are
significant differences between APs and NPs which can be used to predict relative acidostability of proteins. The overall
trends uncovered in the study can be used as general guidelines for designing acidostable proteins. To best of our
knowledge, this work represents the first systematic comparative study of the acidostable proteins and their non-
acidostable orthologs.
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Introduction

Protein acidostability is a common problem in biopharmaceu-

tical and other industries because the vast majority of native

proteins are only stable in near-neutral pH conditions [1,2] and

exposure of a protein to an acidic environment can cause a loss of

activity and denaturalization quickly [3]. In fact, one major reason

that most peptide and protein drugs cannot be delivered via the

oral route is the strong acidic environment in the gastrointestinal

(GI) tract [4], even though the oral route is preferred to the current

parenteral administration because it is non-invasive and conve-

nient for self-administration. Therefore it is highly desirable to

develop acidostable peptide and protein drugs. In addition,

acidostable proteins are also very useful in many other industries

such as paper and pulp, oil, food, and environment cleanup, etc.

Some research has been conducted into investigating the factors

important to acidostability of proteins in order to be able to design

acidostable proteins. For example, Kelch et al studied the folding

rates of two proteins in different pH conditions and then compared

the sequences of the two proteins [1]. Another study was to

analyze the structural properties of proteins with different

acidostability [5,6]. Several studies investigated the pH-dependent

property of protein by calculating the pka values based on the

three-dimensional structure of protein [7,8,9,10]. Despite these

efforts, the mechanisms of protein acidostabilization are far from

being fully understood because of a lack of systematic studies. One

main reason was that the number of known acidostable proteins

was quite limited, which in turn hinders comprehensive studies. A

vast majority of natural proteins are unstable in acidic conditions

because most organisms live in neutral or near-neutral conditions.

Despite some bacteria and archaea that can thrive in acidic

environments (i.e. acidophiles), the cytoplasm of most of these

organisms is at or close to neutrality [2,11]. For example, the

bacteria Acidithiobacillus Ferrooxidans has an optimal growth pH of

1.4, but its cytoplasmic pH is maintained around 6.4 through a pH

homeostasis mechanism [2,12]. Fortunately, the cytoplasm of a few

acidophiles can be acidic and thus the proteins exist in their

cytoplasm are presumably acidostable. Recently, the entire

genome of such an acidophile (Acetobacter aceti) was sequenced

[13], making it possible to perform a systematic study to uncover

the factors governing acidostability.

In this study, we attempt to develop a scoring function for

discriminating proteins from bacteria with acidic cytoplasm (AP)

and those with neutral cytoplasm (NP) based on their sequences

using an integrated statistical and machine learning method. The

proteins from Acetobacter aceti are considered as APs because the

bacteria not only can thrive in acidic environments but also has

acidic cytoplasm. Proteins from five organisms that thrive in acidic

environments but have near-neutral cytoplasmic pH are used as

NP controls (Table 1). Such controls are chosen to reduce the

possible influence of pH homeostasis. To the best of our

knowledge, this work represents the first systematic comparative

study of the AP/NP orthologs.
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In order to perform the comparative study, we derive a set of

889 features from protein sequences. It would be better to include

both sequence and structure information for investigating the

acidostability factors; the vast majority of proteins especially

acidostable ones, however, have no solved structures. In addition,

the basic dogma that protein amino acid primary sequence

determines its native structure implies that the sequence in-

formation may be sufficient to discover the mechanisms of pH-

dependent protein stabilization. In fact, sequence-only features

have been successfully used in related areas such as protein

thermostability [14,15,16,17].

An amino acid residue substitution matrix may reveal different

overall trends for different types of proteins. For example, several

matrices have been developed for thermophilic and mesophilic

proteins to uncover the factors governing thermostability

[17,18,19,20,21,22]. However, to the best of our knowledge,

there is no such a matrix for AP and NP proteins. Thus, in this

study we calculate each of the 380 types of amino acid residue

substitutions based on the pairwise BLAST alignments of all AP-

NP ortholog pairs and construct an acidostability substitution

matrix.

Methods

Datasets
All protein sequences of six organisms (Table 1) were down-

loaded from the NCBI protein database (http://www.ncbi.nlm.

nih.gov/). The names, optimal growth pH and cytoplasm pH of

these six organisms are provided in Table 1. The proteins from

Acetobacter aceti are considered as acidostable proteins (AP) and

proteins from other organisms are used as non-acidostable proteins

(NP). A list of non-redundant AP-NP ortholog pairs are obtained

using an established procedure [17]. In brief, we firstly perform all-

against-all BLAST searches [23] for all AP against NP sequences.

The resulted homolog pairs between AP and NP sequences are

filtered based on the following conservative criteria to identify

putative orthologs:

(1) Reciprocal best BLAST hits with e-value in BLAST searches

less than 10210;

(2) The difference of two sequences is less than 5% of the shorter

sequence;

(3) Higher than 30% sequence similarity.

Secondly, we remove all transmembrane proteins, predicted by

TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) be-

cause transmembrane and global proteins may use different

mechanisms to survive in acidic environments. In addition, to

avoid the statistical bias caused by AP-NP pairs with similar

sequences, the blastclust program [23] is used to remove sequence

redundancy. The minimum length coverage of blastclust clustering

is set to 0.5 and the sequence similarity threshold was 0.25. As the

result of these selection steps, the two amino acid sequences of an

AP-NP pair is very similar (i.e. orthlogous) but they are distinct

from sequences in other AP-NP pairs. Only protein sequences

shorter than 600 and longer than 50 are included in the final non-

redundant AP-NP ortholog dataset. The final dataset includes 393

AP-NP ortholog pairs. The protein sequence identity distribution

between the AP-NP ortholog pairs is shown in Figure 1. The

sequences and accession numbers of these proteins are available in

the supplementary materials File S1.fa and File S2.fa.

Amino Acid Substitution Matrix
We calculate each of the 380 types of amino acid residue

substitution based on the BLAST alignment results of all AP-NP

protein ortholog pairs. The NP to AP amino acid residue

substitution is considered as forward direction and AP to NP is

considered as reverse direction. The statistical significance of

forward and reverse substitutions are estimated using the two-sided

Fisher’s exact test [17].

Features
A set of 889 features derived from protein sequences, calculated

with various software programs or in-house scripts, are used to

encode each protein sequence (Table 2). These features include

the absolute counts of amino acids and other properties (denoted

as ck) and those normalized by chain length (labeled as xk). A

number of programs, including ProtParam [24], NetSurfP [25]

and disEMBL [26], are used to predict the proteins’ structural

properties such as solvent accessible surface area(ASA) [27,28],

exposed/buried residues [29] and secondary structure [30,31].

Although the cellular localization of proteins may play a role in

protein acidostability and algorithms for predicting localization are

available [32,33], we do not use the information because the two

orthologous proteins in each pair likely share the same localiza-

tion.

Table 1. The list of organisms whose proteins are used to
generate the non-redundant AP-NP ortholog pairs.

Organism pHopt pHin

# of
proteins

Acidithiobacilus ferrooxidans ATCC_23270 1.8 6.5 3147

Acidithiobacilus ferrooxidans ATCC_53993 1.8 6.5 2826

Sulfolobus acidocaldarius DSM 639 1.8 6.5 2224

Sulfolobus solfataricus P2 2.5 6.5 2978

Thermoplasma acidophilum DSM 1728 1.4 6.4 1484

Acetobacter aceti NBRC 14818 6.2–3.5 5.8–3.9 4033

The pH values are obtained from [2,42].
pHopt: optimal growth pH value; pHin: cytoplasmic pH value.
doi:10.1371/journal.pone.0045585.t001

Figure 1. Protein sequence identity distribution between the
AP-NP ortholog pairs. The x-axis is the protein identity of AP-NP
ortholog pairs. For example, [30–35) means 30# identity,35. The y-axis
is the corresponding percentage of proteins in the particular identity
region.
doi:10.1371/journal.pone.0045585.g001
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Scoring Function
For each AP-NP protein pair, the relative feature difference Dxi

is calculated using the following formula:

Dxi~
xi(seq1){xi(seq2)

xi(seq1)zxi(seq2)
ð3Þ

Where xi(seq1) and xi(seq2) are the values of the i th features from

the first sequence and the second sequence, respectively. We

construct a scoring function by a linear combination of the ten

most important features. The scoring function can be written as

Score(seq1,seq2)~
X

i

wiDxi ð4Þ

where i runs over all of the 10 most important features and wiis the

weight of each feature. A hill-climbing algorithm is used to fit the

weights of all these features [17,34]. All weights are optimized with

the absolute values limited between 0 and 1. The initial value of

each weight is assigned randomly. The weights are randomly

updated and the number of correct predictions is recorded. The

new weights are kept if the number of the correctly predicted

ortholog pairs increases, or else the weights are rolled back to the

previous values. The optimization is repeated 108 times and the

weight which maximized the number of positive score values are

recorded.

Random Forest
Random Forest (RF) algorithm [35] is an ensemble classification

or regression method using the consensus of many decision trees.

Each of the member trees is built on a bootstrap sample from the

training data and utilizes a random subset of available variables. It

is robust and particularly suitable for classifying high-dimensional

and noisy data. Besides conventional classification or regression,

an important application of RF is that it can assess the importance

of various features based on their contributions to the performance

of the predictive models. Gini importance is frequently used as

a metric for measuring the relative importance of attributes; it is

calculated as the summation of the Gini impurity decreases in

node splits made on the feature over all trees. The Gini impurity is

defined as:

I(A)~1{
Xm

k~1

p2k ð1Þ

where k=1,2,…,m are possible classes and pk is the relative

frequency of class k in a node A. I(A) is equal to zero when all cases

in the node belong to a single class and reaches its maximum when

cases are equally distributed to all classes.

In this study, an R implementation of the RF algorithm (http://

cran.r-project.org/web/packages/randomForest/index.html) is

used to construct the predictive model. Each model built in the

study consists of 5,000 decision trees.

Performance Assessment
Several metrics are used to estimate the performance of the

models developed in the study. Since the discrimination of AP and

NP proteins is treated as a binary classification problem, we plot

the receiver operation characteristic (ROC) curve based on the

prediction results of AP and NP sequences. ROC is a graphic plot

of the true-positive rate (sensitivity) against the false-positive rate

(1-specificity). The area under an ROC curve (AUC) represents

the trade-off between sensitivity and specificity. AUC is in the

range of 0 to 1 and the bigger the AUC, the better the

performance. An AUC of 0.5 indicates random classification.

The accuracy of a classification is calculated by.

ACC~
TPzTN

TPzTNzFPzFN
ð2Þ

Table 2. The list of the 889 sequence based features.

Protein feature # of Features Source

Sequence length (L) 1 In house script

Number and composition of amino acids 40

Number and composition of dipeptides 800

Number and percentage of positive, negative and all charged residues, as well as the net charges 8

Number and percentage of small (T and D), tiny (G, A, S and P), aromatic (F, H, Y, W), aliphatic, hydrophobic
and polar residues

12

Number and percentage of residues which can form hydrogen bond in side chain 2

Number of sulfide atoms 1

The average of the maximum solvent accessible surface area (ASA) of each amino acid 1 Eisenhaber [28]

Predicted isoelectric point (pI) of the protein and the average pI on all residues (pIa) 2 ProtParam [24]

Instability index and instability class 2

Aliphatic index 1

Gravy hydropathy index 1

Number and Composition of the predicted secondary structure residues 6 NetSurfP [25]

Number and Predicted percentages of buried/exposed residues 4

The overall length and percentage of all coils, rem465, and hot loop 6 disEMBL [26]

Mean Relative Surface Accessibility – RSA 1

Mean Z-fit score for RSA prediction 1

doi:10.1371/journal.pone.0045585.t002
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where TP, TN, FP and FN are the numbers of true positives, true

negatives, false positives and false negatives, respectively. A true

case stands for the AP protein is correctly identified.

Results and Discussion

In this study, we first construct a non-redundant dataset which

contains 393 AP-NP ortholog protein pairs. The amino acid

residue compositions of both groups of proteins are analyzed and

an amino acid residue substitution matrix is generated to assess the

substitution preference in the AP-NP pairs. We then generate a set

of 889 features to decode AP-NP proteins and use the Random

Forest algorithm to rank the relative importance of these features

for discriminating APs and NPs. A scoring function is developed

using the 10 most important features. Finally, RF models are

developed using all or selected features.

Amino Acid Composition
We calculate the amino acid compositions of all AP-NP

ortholog protein pairs and evaluate the statistical difference using

the paired and unpaired t-test (Table 3). It can be seen in the

Table 3 that the most significantly increased residues in APs are

Ala (A), Pro (P) and Thr (T) while residues reduced in number

include Ile (I), Asn (N), Gln (Q) and Tyr (Y). The results are largely

consistent with current understanding of protein acidostabiliza-

tion. For example, Pro has a rigid five-member ring which can

often increase protein stability. The side chain of both Asn and

Gln contain an amide which is labile to hydrolysis in acidic

conditions [36]. Thus the reduction of Asn and Gln can improve

the acidostability of a protein. Interestingly, the percentage of His

in NP is higher than in AP (paired t-test p-value = 2.4861023),

suggesting metal ions are unlikely a significant factor, at least for

Acetobacter aceti, in protein acidostabilization.

Although we calculate the p-values of both paired and unpaired

t-tests, the paired one should be considered as a better choice for

estimating the significance of the composition difference. The two

methods differ at the level of information granules. The former is

at the overall amino acid composition differences. We focused on

the differences while the latter instead is on AP and NP ortholog

pairs. Thus, the paired approach may reduce or eliminate the

effects of confounding factors such as protein families because it is

well established that the amino acid composition may vary in

different protein classes [37]. In addition, a protein level study may

be more relevant to designing acidostable proteins because

orthologs are essentially mutants with multiple mutations.

Amino Acid Residue Substitution Matrix
The pairwise amino acid residue substitutions are calculated

from the pairwise sequence alignment of AP-NP pairs and

displayed in Table 4. We calculate the absolute counts and the

ratio of each substitution to the opposite replacement. Significantly

biased substitutions (p-value ,10210, two-sided Fisher’s exact test)

are shown in bold and color. Red cells represent substitutions

favored in the forward direction (NP to AP), while blues are

favored in the reverse direction (AP to NP). Overall, there are 81

significantly biased substitutions which include 43 favored in the

forward direction and 38 favored in the opposite direction.

Specifically, Gln (Q) is preferred to be substituted by Glu (E), Arg

(R) and Ala (A) in the forward direction so the acid-labile amide is

reduced. For the same reason, Asn (N) is preferred to be replaced

by Asp (D), Gly (G) and Ala (A). Other notable preferred

substitutions in the forward direction include Tyr and Ile by Leu,

Table 3. Comparison of the amino acid composition of AP-NP ortholog pairs.

Amino Acid Composition in AP Composition in NP P-value (t-test)
P-value (paired
t-test)

S 0.05360.015 0.05160.016 0.02 5.29610203

Q 0.03060.012 0.03660.016 3.1561028 1.32610210

N 0.02560.011 0.02960.015 1.9361024 4.1061026

T 0.05660.015 0.04660.014 2.70610221 8.01610226

C 0.01060.009 0.01060.010 0.20 0.02

G 0.08660.021 0.08360.022 0.16 0.02

A 0.11460.030 0.10660.037 8.4061024 3.7561026

H 0.02260.011 0.02460.012 0.02 2.4861023

M 0.02660.011 0.02560.011 0.45 0.31

Y 0.01960.011 0.02760.014 1.37610217 3.38610229

F 0.03260.012 0.03260.014 0.61 0.44

V 0.07760.019 0.07660.020 0.25 0.11

L 0.09660.023 0.09860.027 0.13 0.02

P 0.05160.016 0.04860.016 3.6361023 1.8261025

I 0.05260.016 0.05960.023 7.4961026 1.1461027

W 0.01060.008 0.01160.010 0.11 0.01

D 0.05960.015 0.05660.015 0.02 1.7561023

E 0.06560.019 0.06660.020 0.46 0.26

K 0.04060.022 0.04360.029 0.14 0.04

R 0.07460.024 0.07360.024 0.94 0.89

The p-values based on t-test and paired t-test. Amino acids significantly increased or reduced in AP than NP are in bold or italics, respectively.
doi:10.1371/journal.pone.0045585.t003
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Lys by Arg, Ser by Ala, etc. In the reverse direction (AP to NP)

substitution, Cys and Thr are preferred to be substituted by Ala

and Val, Met by Leu, and Arg by Lys, etc. Most of the substitution

preferences are asymmetrical. The ratios in this matrix may reflect

the acidostable adaption induced substitution biases and should be

useful in designing acidostable proteins.

Table 4. Amino acid substitution matrix between AP and NP proteins.

NP/AP Uncharged polar Nonpolar Charged

S Q N T C G A H M Y F V L P I W D E K R

S 1761 164 199 448 45 288 681 102 45 42 39 129 126 183 80 18 280 283 177 251

– 1.50 1.21 0.82 0.70 0.92 0.90 1.42 1.15 1.91 1.15 0.97 1.18 0.97 1.45 1.64 1.28 1.14 1.42 1.34

Q 109 945 82 100 6 101 211 117 47 42 32 88 146 51 54 19 148 360 167 305

0.66 – 0.85 0.66 0.38 0.71 0.61 1.00 0.73 1.91 0.94 0.86 0.89 0.66 1.20 1.06 0.65 0.91 0.82 0.81

N 165 97 1144 89 10 151 130 93 14 35 18 41 63 48 30 10 212 108 73 128

0.83 1.18 – 0.55 0.59 0.74 0.65 1.39 0.58 1.67 0.62 0.98 0.98 0.83 0.88 1.43 0.71 0.81 0.72 0.94

T 549 151 161 1908 49 175 488 95 71 68 67 368 258 139 198 28 211 264 160 286

1.23 1.51 1.81 – 1.00 1.17 1.16 1.70 0.95 2.34 1.14 1.26 1.24 1.14 1.78 2.80 1.45 1.52 1.31 1.69

C 64 16 17 49 411 27 160 12 23 11 20 130 63 12 54 7 7 6 6 27

1.42 2.67 1.70 1.00 – 1.04 1.32 1.71 1.00 1.10 1.82 1.55 0.98 0.80 1.69 0.70 0.37 0.60 0.67 1.13

G 313 142 203 150 26 6036 747 87 44 44 43 83 107 153 50 35 254 194 130 219

1.09 1.41 1.34 0.86 0.96 – 1.05 1.14 1.22 3.67 0.93 1.05 0.96 1.02 1.56 1.94 0.95 0.97 0.99 1.18

A 753 344 199 420 121 710 4986 169 165 161 127 733 552 364 299 64 335 561 293 528

1.11 1.63 1.53 0.86 0.76 0.95 – 1.41 1.26 2.40 1.13 1.19 1.22 0.89 1.29 1.60 0.96 1.01 1.20 1.13

H 72 117 67 56 7 76 120 951 19 135 59 48 90 53 26 19 86 95 83 157

0.71 1.00 0.72 0.59 0.58 0.87 0.71 – 0.83 2.14 1.09 0.79 1.22 1.02 0.84 1.19 0.71 0.81 1.36 0.78

M 39 64 24 75 23 36 131 23 775 49 93 192 499 17 220 31 24 53 37 77

0.87 1.36 1.71 1.06 1.00 0.82 0.79 1.21 – 1.96 1.15 1.05 1.11 0.57 1.14 1.82 1.26 1.13 1.12 1.20

Y 22 22 21 29 10 12 67 63 25 1134 263 61 111 16 55 42 18 29 14 54

0.52 0.52 0.60 0.43 0.91 0.27 0.42 0.47 0.51 – 0.77 0.46 0.53 0.46 0.76 0.39 0.47 0.43 0.40 0.53

F 34 34 29 59 11 46 112 54 81 343 1541 185 430 22 178 85 21 30 21 46

0.87 1.06 1.61 0.88 0.55 1.07 0.88 0.92 0.87 1.30 – 0.94 0.99 0.81 1.24 0.87 0.72 0.88 0.88 0.64

V 133 102 42 293 84 79 616 61 182 133 197 3271 1062 119 1264 48 66 147 103 173

1.03 1.16 1.02 0.80 0.65 0.95 0.84 1.27 0.95 2.18 1.06 – 1.22 0.93 1.19 1.66 0.78 1.04 1.17 0.97

L 107 164 64 208 64 112 454 74 448 209 433 872 5028 108 1100 110 75 131 101 246

0.85 1.12 1.02 0.81 1.02 1.05 0.82 0.82 0.90 1.88 1.01 0.82 – 0.93 1.08 1.28 0.85 0.81 1.15 0.84

P 189 77 58 122 15 150 407 52 30 35 27 128 116 2930 67 14 176 212 120 153

1.03 1.51 1.21 0.88 1.25 0.98 1.12 0.98 1.76 2.19 1.23 1.08 1.07 – 2.03 1.40 1.20 1.20 1.11 1.20

I 55 45 34 111 32 32 231 31 193 72 144 1065 1022 33 2214 28 26 57 39 97

0.69 0.83 1.13 0.56 0.59 0.64 0.77 1.19 0.88 1.31 0.81 0.84 0.93 0.49 – 1.12 0.65 0.77 0.81 0.78

W 11 18 7 10 10 18 40 16 17 109 98 29 86 10 25 384 8 17 19 30

0.61 0.95 0.70 0.36 1.43 0.51 0.63 0.84 0.55 2.60 1.15 0.60 0.78 0.71 0.89 – 0.36 0.65 0.90 0.63

D 219 226 299 146 19 266 350 121 19 38 29 85 88 147 40 22 2923 754 154 217

0.78 1.53 1.41 0.69 2.71 1.05 1.04 1.41 0.79 2.11 1.38 1.29 1.17 0.84 1.54 2.75 – 1.11 0.90 1.09

E 249 396 134 174 10 201 554 118 47 67 34 141 161 176 74 26 682 2830 263 431

0.88 1.10 1.24 0.66 1.67 1.04 0.99 1.24 0.89 2.31 1.13 0.96 1.23 0.83 1.30 1.53 0.90 – 1.12 1.09

K 125 203 102 122 9 131 245 61 33 35 24 88 88 108 48 21 171 235 1453 576

0.71 1.22 1.40 0.76 1.50 1.01 0.84 0.73 0.89 2.50 1.14 0.85 0.87 0.90 1.23 1.11 1.11 0.89 – 0.87

R 187 378 136 169 24 185 466 201 64 102 72 178 293 127 124 48 200 396 662 3400

0.75 1.24 1.06 0.59 0.89 0.84 0.88 1.28 0.83 1.89 1.57 1.03 1.19 0.83 1.28 1.60 0.92 0.92 1.15 –

The top number in each cell (begin with amino acid residue) is the observed substitution instances and bottom one is the ratio of the number of the substitution cases
to the opposite substitution. Significant biased substitutions (p-value ,10210, two-sided Fisher’s exact test) are highlighted in bold and italics. Bold cells are significant
AP favored substitutions while italics cells are NP favored.
doi:10.1371/journal.pone.0045585.t004
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Figure 2. The 25 most important features ranked by the Gini importance. The prefix x_ and c_ indicate the normalized and absolute
features. Single letter amino acid code is used. For example, x_A is the normalized ratio of Alanine residue and x_AS is the normalized ratio of
dipeptide AS (Alanine-Serine). Coil: residues in coils: Hbond: residues which can form hydrogen bond in side chain; aliphatic, aromatic, tiny and small
are aliphatic, aromatic, tiny and small residues respectively.
doi:10.1371/journal.pone.0045585.g002

Figure 3. The cumulative curves of 10 most important normalized features against the relative difference between the AP and NP
sequence. The prefix x indicates normalized features. Single letter amino acid code is used. For example, x_Y is the ratio of Tyrosine residue and
x_LQ is the normalized ratio of dipeptide LQ (Leucine-Glutamine). Aliphatic, aromatic, small and tiny are aliphatic, aromatic, small and tiny residues,
respectively.
doi:10.1371/journal.pone.0045585.g003
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Relative Importance of Features
We rank all the 889 features derived from protein sequence

using the RF algorithm. Five-fold cross validation is used to

evaluate the relative importance of features. The set of 393 AP-NP

protein pairs are randomly split into 5 groups with approximately

equal sample size. Four groups are used as training set and the

remaining group is reserved for testing. We build a RF model with

5,000 trees for the first training set. The procedures are then

repeated four more times until each group has been used as

a testing set, once. The average and standard deviation of the Gini

importance of top 25 features (top25) are displayed in Figure 2.

We find that the normalized features are generally more important

than the absolute counts of the corresponding features and the

normalized amino acid residues composition of Thr, Tyr, Gln, Ile

and Lys are among the most important. Both small and tiny

categories are among the top 25 features (Figure 2), suggesting that

the volume of amino acids may play a role in protein

acidostability. In addition, Figure 2 indicates that both aromatic

and aliphatic residues are important in discriminating AP and NP

proteins.

Scoring Function
The cumulative curves of the relative feature difference of the

10 most important normalized features in the training dataset are

shown in Figure 3. The cumulative curves show typical sigmoid

shapes, the inflexion points of which are located at the half height.

The sign of the weight of each feature is determined by the

location of its inflexion point of the cumulative curve: positive for

features located to the left and negative for those to the right of the

zero difference line. Thus the signs of x_T, x_small, x_K and

x_tiny are positive and the ones for x_Y, x_Q, x_I, x_LQ,

x_aromatic and x_aliphatic are negative. The features of

x_aromatic and amino acid Tyr (Y) indicate aromatic amino acid

is important to distinguish the AP and NP proteins. It is because

the aromatic ring in such amino acid may form pi stacking and

cation-pi bond which can improve the stability of proteins in acid

environment [38]. The aliphatic amino acids are hydrophobic and

can have hydrophobic interactions which can increase the

stabilization of proteins [39]. The features of x_small and x_tiny

indicate the amino acid volume has contribution in distinguishing

the AP and NP proteins. It may be the reason that amino acid with

small volumes can contribute the dense packing interaction of

proteins [39,40] which can enhance the stabilization of proteins.

To determine whether the optimization is trapped in a local

maximum, the optimization is repeated four more times using

different random initial values. The results are very close to each

other. The average value of each weight is used as the final weights

(Table 5). It is noteworthy that the absolute values of weights do

not reflect the relative importance in the ability of discrimination,

Table 5. The weights of 10 features used in the scoring function.

Feature x_K x_small x_T x_tiny x_aliphatic x_aromatic x_I x_LQ x_Q x_Y

Weigth 0.68 0.75 0.90 0.58 20.97 20.74 20.96 20.04 20.01 20.53

The prefix x indicates the normalized features.
doi:10.1371/journal.pone.0045585.t005

Figure 4. The ROC curves. RF: a RF model based on all features; RF10: a RF model using 10 most important features; RF21 using 21 features
selected by varSelRF package [41]; Score: based on the score function.
doi:10.1371/journal.pone.0045585.g004
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because the features are not normalized. The signs of the weight

indicate these features are favorable to AP (+) or not (2).

We use the scoring function to discriminate the AP and NP

sequences. It can correctly discriminate 33861.2 out of 393

ortholog pairs (86.0% ACC). To further evaluate the ability of the

scoring function in discriminating AP-NP pairs, we challenge the

scoring function in discriminating non-homologous AP-NP pairs.

In this test, we compare each AP protein in AP to all NP proteins.

The overall accuracy of these 3936393 pairwise comparisons is

76.65%, indicating that the scoring function can be able to

discriminate non homologous AP-NP pairs as well. The result

suggests that the AP sequences share common acidostabilization

mechanisms, resulting in sufficient acidostability for acidic

conditions.

Random Forest Classification Models
We first use a standard five-fold cross validation procedure to

estimate the performance of Random Forest classification models

using all 889 features. The AUC and ACC are 0.805 and 72.3%

(Figure 4), respectively. The AUC and ACC are improved to

0.830 and 73.6%, respectively, for models using only top 10

features, ranked using Gini importance. In addition, we use

varSelRF package [41] to identify the best combination feature set

of 21 features. The AUC and ACC of RF models based on 21

features are 0.837 and 75.3%, respectively. The score function

achieves an AUC of 0.913, indicating that the score function

achieves the best performance. The improved performance using

selected features suggests that the top features are important to

protein acidostability, which can be used as a general guide for

designing acidostable proteins. For example, the number of lysine,

tyrosine, and small or tiny residues should be increased at the cost

of aliphatic and aromatic residues and glutamine, in particular.

Conclusion
In this work, we develop a scoring function and Random Forest

predictive models for discriminating acidostable and non-acido-

stable proteins. The scoring function and models are capable of

discriminating both AP-NP ortholog proteins and non-ortholog

proteins. The analysis of amino acid composition and residue

substitution preference between AP and NP clearly indicates that

different amino acid residues may contribute differently to the

protein acidostability. The overall trends of acidostabilization

uncovered in the study should be useful for designing acidostable

proteins.

Supporting Information

File S1 AP sequences in FASTA format.
(FA)

File S2 NP sequences in FASTA format.
(FA)
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