835 research outputs found

    Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss - A Common Hereditary Deafness

    Get PDF
    Hearing loss due to mutations in the connexin gene family, which encodes gap junctional proteins, is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2) mutations are responsible for ~50% of non-syndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. However, there is no apparent, demonstrable relationship between specific changes in connexin (channel) functions and the phenotypes of mutation-induced hearing loss. Moreover, new experiments further demonstrate that the hypothesized K+-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Cx30 (GJB6), Cx29 (GJC3), Cx31 (GJB3), and Cx43 (GJA1) mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation-induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes remain unclear. Also, little is known about specific mutation-induced pathological changes in vivo and little information is available for humans. Such further studies are urgently required

    ECLSS Sustaining Compatibility Testing on Urine Processor Assembly Nonmetallic Materials for Reformulation of Pretreated Urine Solution

    Get PDF
    On International Space Station (ISS), the Urine Processor Assembly (UPA) converts human urine and flush water into potable water. The urine is acid-pretreated primarily to control microbial growth. In recent years, the sulfuric acid (H2SO4) pretreatment was believed to be largely responsible for producing salt crystals capable of plugging filters in UPA components and significantly reducing the percentage of water recovery from urine. In 2012, ISS management decided to change the acid pretreatment for urine from sulfuric to phosphoric with the goal of eliminating or minimizing formation of salt crystals. In 2013-2014, as part of the qualification of the phosphoric acid (H3PO4) formulation, samples of 12 nonmetallic materials used in UPA components were immersed for up to one year in pretreated urine and brine solutions made with the new H3PO4 formulation. Dynamic mechanical analysis (DMA) was used to measure modulus (stiffness) of the immersed samples compared to virgin control samples. Such compatibility data obtained by DMA for the H3PO4-based solutions were compared to DMA data obtained for the H2SO4-based solutions in 2002-2003

    1H, 15N, and 13C chemical shift assignments of calcium-binding protein 1 with Ca2+ bound at EF1, EF3 and EF4

    Get PDF
    Calcium-binding protein 1 (CaBP1) regulates inositol 1,4,5-trisphosphate receptors (InsP3Rs) and a variety of voltage-gated Ca2+ channels in the brain. We report complete NMR chemical shift assignments of the Ca2+-saturated form of CaBP1 with Ca2+ bound at EF1, EF3 and EF4 (residues 1–167, BMRB no. 16862)

    Effects of a Protein Preload on Gastric Emptying, Glycemia, and Gut Hormones After a Carbohydrate Meal in Diet-Controlled Type 2 Diabetes

    Get PDF
    OBJECTIVE: We evaluated whether a whey preload could slow gastric emptying, stimulate incretin hormones, and attenuate postprandial glycemia in type 2 diabetes. RESEARCH DESIGN AND METHODS: Eight type 2 diabetic patients ingested 350 ml beef soup 30 min before a potato meal; 55 g whey was added to either the soup (whey preload) or potato (whey in meal) or no whey was given. RESULTS: Gastric emptying was slowest after the whey preload (P < 0.0005). The incremental area under the blood glucose curve was less after the whey preload and whey in meal than after no whey (P < 0.005). Plasma glucose-dependent insulinotropic polypeptide, insulin, and cholecystokinin concentrations were higher on both whey days than after no whey, whereas glucagon-like peptide 1 was greatest after the whey preload (P < 0.05). CONCLUSIONS: Whey protein consumed before a carbohydrate meal can stimulate insulin and incretin hormone secretion and slow gastric emptying, leading to marked reduction in postprandial glycemia in type 2 diabetes.Jing Ma, Julie E. Stevens, Kimberly Cukier, Anne F. Maddox, Judith M. Wishart, Karen L. Jones, Peter M. Clifton, Michael Horowitz, and Christopher K. Rayne

    Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes

    Get PDF
    Background The exceptional physical-chemical properties of carbon nanotubes have lead to their use in diverse commercial and biomedical applications. However, their utilization has raised concerns about human exposure that may predispose individuals to adverse health risks. The present study investigated the susceptibility to cardiac ischemic injury following a single exposure to various forms of multi-walled carbon nanotubes (MWCNTs). It was hypothesized that oropharyngeal aspiration of MWCNTs exacerbates myocardial ischemia and reperfusion injury (I/R injury). Methods Oropharyngeal aspiration was performed on male C57BL/6J mice with a single amount of MWCNT (0.01 - 100 μg) suspended in 100 μL of a surfactant saline (SS) solution. Three forms of MWCNTs were used in this study: unmodified, commercial grade (C-grade), and functionalized forms that were modified either by acid treatment (carboxylated, COOH) or nitrogenation (N-doped) and a SS vehicle. The pulmonary inflammation, serum cytokine profile and cardiac ischemic/reperfusion (I/R) injury were assessed at 1, 7 and 28 days post-aspiration. Results Pulmonary response to MWCNT oropharyngeal aspiration assessed by bronchoalveolar lavage fluid (BALF) revealed modest increases in protein and inflammatory cell recruitment. Lung histology showed modest tissue inflammation as compared to the SS group. Serum levels of eotaxin were significantly elevated in the carboxylated MWCNT aspirated mice 1 day post exposure. Oropharyngeal aspiration of all three forms of MWCNTs resulted in a time and/or dose-dependent exacerbation of myocardial infarction. The severity of myocardial injury varied with the form of MWCNTs used. The N-doped MWCNT produced the greatest expansion of the infarct at any time point and required a log concentration lower to establish a no effect level. The expansion of the I/R injury remained significantly elevated at 28 days following aspiration of the COOH and N-doped forms, but not the C-grade as compared to SS. Conclusion Our results suggest that oropharyngeal aspiration of MWCNT promotes increased susceptibility of cardiac tissue to ischemia/reperfusion injury without a significant pulmonary inflammatory response. The cardiac injury effects were observed at low concentrations of MWCNTs and presence of MWCNTs may pose a significant risk to the cardiovascular system

    Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium.

    Get PDF
    BACKGROUND: Invasive fungal diseases (IFDs) remain important causes of morbidity and mortality. The consensus definitions of the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer and the Mycoses Study Group have been of immense value to researchers who conduct clinical trials of antifungals, assess diagnostic tests, and undertake epidemiologic studies. However, their utility has not extended beyond patients with cancer or recipients of stem cell or solid organ transplants. With newer diagnostic techniques available, it was clear that an update of these definitions was essential. METHODS: To achieve this, 10 working groups looked closely at imaging, laboratory diagnosis, and special populations at risk of IFD. A final version of the manuscript was agreed upon after the groups' findings were presented at a scientific symposium and after a 3-month period for public comment. There were several rounds of discussion before a final version of the manuscript was approved. RESULTS: There is no change in the classifications of "proven," "probable," and "possible" IFD, although the definition of "probable" has been expanded and the scope of the category "possible" has been diminished. The category of proven IFD can apply to any patient, regardless of whether the patient is immunocompromised. The probable and possible categories are proposed for immunocompromised patients only, except for endemic mycoses. CONCLUSIONS: These updated definitions of IFDs should prove applicable in clinical, diagnostic, and epidemiologic research of a broader range of patients at high-risk

    Fluconazole for empiric antifungal therapy in cancer patients with fever and neutropenia

    Get PDF
    BACKGROUND: Several clinical trials have demonstrated the efficacy of fluconazole as empiric antifungal therapy in cancer patients with fever and neutropenia. Our objective was to assess the frequency and resource utilization associated with treatment failure in cancer patients given empiric fluconazole antifungal therapy in routine inpatient care. METHODS: We performed a retrospective cohort study of cancer patients treated with oral or intravenous fluconazole between 7/97 and 6/01 in a tertiary care hospital. The final study cohort included cancer patients with neutropenia (an absolute neutrophil count below 500 cells/mm(3)) and fever (a temperature above 38°C or 100.4°F), who were receiving at least 96 hours of parenteral antibacterial therapy prior to initiating fluconazole. Patients' responses to empiric therapy were assessed by reviewing patient charts. RESULTS: Among 103 cancer admissions with fever and neutropenia, treatment failure after initiating empiric fluconazole antifungal therapy occurred in 41% (95% confidence interval (CI) 31% – 50%) of admissions. Patients with a diagnosis of hematological malignancy had increased risk of treatment failure (OR = 4.6, 95% CI 1.5 – 14.8). When treatment failure occurred the mean adjusted increases in length of stay and total costs were 7.4 days (95% CI 3.3 – 11.5) and $18,925 (95% CI 3,289 – 34,563), respectively. CONCLUSION: Treatment failure occurred in more than one-third of neutropenic cancer patients on fluconazole as empiric antifungal treatment for fever in routine clinical treatment. The increase in costs when treatment failure occurs is substantial

    OOI Biogeochemical Sensor Data: Best Practices and User Guide. Version 1.0.0.

    Get PDF
    The OOI Biogeochemical Sensor Data Best Practices and User Guide is intended to provide current and prospective users of data generated by biogeochemical sensors deployed on the Ocean Observatories Initiative (OOI) arrays with the information and guidance needed for them to ensure that the data is science-ready. This guide is aimed at researchers with an interest or some experience in ocean biogeochemical processes. We expect that users of this guide will have some background in oceanography, however we do not assume any prior experience working with biogeochemical sensors or their data. While initially envisioned as a “cookbook” for end users seeking to work with OOI biogeochemical (BGC) sensor data, our Working Group and Beta Testers realized that the processing required to meet the specific needs of all end users across a wide range of potential scientific applications and combinations of OOI BGC data from different sensors and platforms couldn’t be synthesized into a single “recipe”. We therefore provide here the background information and principles needed for the end user to successfully identify and understand all the available “ingredients” (data), the types of “cooking” (end user processing) that are recommended to prepare them, and a few sample “recipes” (worked examples) to support end users in developing their own “recipes” consistent with the best practices presented here. This is not intended to be an exhaustive guide to each of these sensors, but rather a synthesis of the key information to support OOI BGC sensor data users in preparing science-ready data products. In instances when more in-depth information might be helpful, references and links have been provided both within each chapter and in the Appendix
    corecore