40 research outputs found

    Tibiofemoral Contact Forces in the Anterior Cruciate Ligament-Reconstructed Knee.

    Get PDF
    PURPOSE: To investigate differences in ACL reconstructed (ACLR) and healthy individuals in terms of the magnitude of the tibiofemoral contact forces, as well as the relative muscle and external load contributions to those contact forces, during walking, running and sidestepping gait tasks. METHODS: A computational electromyography-driven neuromusculoskeletal model was used to estimate the muscle and tibiofemoral contact forces in those with combined semitendinosus and gracilis tendon autograft ACLR (n=104, 29.7±6.5 years, 78.1±14.4 kg) and healthy controls (n=60, 27.5±5.4 years, 67.8±14.0 kg) during walking (1.4±0.2 ms), running (4.5±0.5 ms) and sidestepping (3.7±0.6 ms). Within the computational model, the semitendinosus of ACLR participants was adjusted to account for literature reported strength deficits and morphological changes subsequent to autograft harvesting. RESULTS: ACLRs had smaller maximum total and medial tibiofemoral contact forces (~80% of control values, scaled to bodyweight) during the different gait tasks. Compared to controls, ACLRs were found to have a smaller maximum knee flexion moment, which explained the smaller tibiofemoral contact forces. Similarly, compared to controls, ACLRs had both a smaller maximum knee flexion angle and knee flexion excursion during running and sidestepping, which may have concentrated the articular contact forces to smaller areas within the tibiofemoral joint. Mean relative muscle and external load contributions to the tibiofemoral contact forces were not significantly different between ACLRs and controls. CONCLUSION: ACLRs had lower bodyweight-scaled tibiofemoral contact forces during walking, running and sidestepping, likely due to lower knee flexion moments and straighter knee during the different gait tasks. The relative contributions of muscles and external loads to the contact forces were equivalent between groups

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    Greater magnitude tibiofemoral contact forces are associated with reduced prevalence of osteochondral pathologies 2-3 years following anterior cruciate ligament reconstruction

    Get PDF
    PURPOSE: External loading of osteoarthritic and healthy knees correlates with current and future osteochondral tissue state. These relationships have not been examined following anterior cruciate ligament reconstruction. We hypothesised greater magnitude tibiofemoral contact forces were related to increased prevalence of osteochondral pathologies, and these relationships were exacerbated by concomitant meniscal injury. METHODS: This was a cross-sectional study of 100 individuals (29.7 ± 6.5 years, 78.1 ± 14.4 kg) examined 2-3 years following hamstring tendon anterior cruciate ligament reconstruction. Thirty-eight participants had concurrent meniscal pathology (30.6 ± 6.6 years, 83.3 ± 14.3 kg), which included treated and untreated meniscal injury, and 62 participants (29.8 ± 6.4 years, 74.9 ± 13.3 kg) were free of meniscal pathology. Magnetic resonance imaging of reconstructed knees was used to assess prevalence of tibiofemoral osteochondral pathologies (i.e., cartilage defects and bone marrow lesions). A calibrated electromyogram-driven neuromusculoskeletal model was used to predict medial and lateral tibiofemoral compartment contact forces from gait analysis data. Relationships between contact forces and osteochondral pathology prevalence were assessed using logistic regression models. RESULTS: In patients with reconstructed knees free from meniscal pathology, greater medial contact forces were related to reduced prevalence of medial cartilage defects (odds ratio (OR) = 0.7, Wald χ2(2) = 7.9, 95% confidence interval (CI) = 0.50-95, p = 0.02) and medial bone marrow lesions (OR = 0.8, Wald χ2(2) = 4.2, 95% CI = 0.7-0.99, p = 0.04). No significant relationships were found in lateral compartments. In reconstructed knees with concurrent meniscal pathology, no relationships were found between contact forces and osteochondral pathologies. CONCLUSIONS: In patients with reconstructed knees free from meniscal pathology, increased contact forces were associated with fewer cartilage defects and bone marrow lesions in medial, but not, lateral tibiofemoral compartments. No significant relationships were found between contact forces and osteochondral pathologies in reconstructed knees with meniscal pathology for any tibiofemoral compartment. Future studies should focus on determining longitudinal effects of contact forces and changes in osteochondral pathologies. LEVEL OF EVIDENCE: IV

    Cartilage morphology at 2–3 years following anterior cruciate ligament reconstruction with or without concomitant meniscal pathology

    Get PDF
    Purpose: To examine differences in cartilage morphology between young adults 2–3 years post-anterior cruciate ligament reconstruction (ACLR), with or without meniscal pathology, and control participants. Methods: Knee MRI was performed on 130 participants aged 18–40 years (62 with isolated ACLR, 38 with combined ACLR and meniscal pathology, and 30 healthy controls). Cartilage defects, cartilage volume and bone marrow lesions (BMLs) were assessed from MRI using validated methods. Results: Cartilage defects were more prevalent in the isolated ACLR (69 %) and combined group (84 %) than in controls (10 %, P < 0.001). Furthermore, the combined group showed higher prevalence of cartilage defects on medial femoral condyle (OR 4.7, 95 % CI 1.3–16.6) and patella (OR 7.8, 95 % CI 1.5–40.7) than the isolated ACLR group. Cartilage volume was lower in both ACLR groups compared with controls (medial tibia, lateral tibia and patella, P < 0.05), whilst prevalence of BMLs was higher on lateral tibia (P < 0.001), with no significant differences between the two ACLR groups for either measure. Conclusions: Cartilage morphology was worse in ACLR patients compared with healthy controls. ACLR patients with associated meniscal pathology have a higher prevalence of cartilage defects than ACLR patients without meniscal pathology. The findings suggest that concomitant meniscal pathology may lead to a greater risk of future OA than isolated ACLR. Level of evidence: III
    corecore