1,440 research outputs found

    Biochemical and functional characterisation of casein and whey protein hydrolysates : a study on the correlations between biochemical and functional properties using multivariate data analysis

    Get PDF
    Whey protein and sodium caseinate were hydrolysed with commercially available enzyme preparations. The resulting hydrolysates were characterised using several analytical characterisation methods and by determination of several functional properties. Subsequently, correlations between the biochemical characteristics themselves and between biochemical and functional properties were studied using multivariate regression analysis.Biochemical characteristics of hydrolysates were determined using unifactorial methods like the degree of hydrolysis, and by multifactorial methods, i.e . reversed phase (RPC) and size exclusion chromatography (SEC), and Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy appeared to discriminate most effectively between hydrolysates made from different protein sources and classes of proteolytic enzymes, followed by RPC and SEC.Emulsion and foam properties of hydrolysates were similar or inferior to those of the parental proteins. Casein hydrolysates generally showed better emulsion and foam forming ability than whey protein hydrolysates. Foam forming ability of whey protein hydrolysates was correlated to the molecular weight distribution (MWD) of the peptides, showing that especially peptides with MW of 3-5 kDa contributed to foam forming ability.Concerning prevention of emulsion instability due to coalescence it was shown that peptides with a molecular weight larger than 2 kDa are needed. Foam stabilising ability of casein hydrolysates also depended on the MWD of hydrolysates, but higher molecular weight peptides, i.e. larger than 7 kDa, were needed to obtain good foam stability.The ability of the three multifactorial characterisation methods (SEC, RPC, FTIR spectroscopy) to predict functional properties was investigated. It appeared that SEC profiles were able to predict emulsion and foam stability of all hydrolysates, as well as foam forming ability, Angiotensin Converting Enzyme (ACE) inhibiting ability and bitterness of whey hydrolysates. RPC profiles were also able to predict these properties and additionally predicted solubility and bitterness of casein hydrolysates. FTIR spectra were best suited to predict a variety of hydrolysate properties, since apart from the before-mentioned properties, the spectra can also be used to predict emulsion forming ability and to improve prediction of bitterness of hydrolysates.Finally, the influence of hydrolysis process conditions on ACE inhibiting ability of whey hydrolysates was investigated, showing that ACE inhibiting activity could be optimised by using process optimisation techniques like experimental design and response surface optimisation

    Chemo-mechanics in alloy phase stability

    Full text link
    We describe a first-principles statistical mechanics method to calculate the free energies of crystalline alloys that depend on temperature, composition, and strain. The approach relies on an extension of the alloy cluster expansion to include an explicit dependence on homogeneous strain in addition to site occupation variables that track the degree of chemical ordering. The method is applied to the Si-Ge binary alloy and is used to calculate free energies that describe phase stability under arbitrary epitaxial constraints. We find that while the incoherent phase diagram (in which coexisting phases are not affected by coherency constraints) hosts a miscibility gap, coherent phase equilibrium predicts ordering and negative enthalpies of mixing. Instead of chemical instability, the chemo-mechanical free energy exhibits instabilities along directions that couple the composition of the alloy with a volumetric strain order parameter. This has fundamental implications for phase field models of spinodal decomposition as it indicates the importance of gradient energy coefficients that couple gradients in composition with gradients in strain

    Are Ecosystem Engineering Traits Fixed or Flexible : A Study on Clonal Expansion Strategies in Co-occurring Dune Grasses

    Get PDF
    Many vegetated coastal ecosystems are formed through ecosystem engineering by clonal vegetation. Recent work highlights that the spatial shoot organization of the vegetation determines local sediment accretion and subsequently emerging landscape morphology. While this key engineering trait has been found to differ between species and prevailing environmental conditions, it remains unknown how the interplay of both factors drive shoot organization and therefore landscape morphology. Here, we compared the spatial shoot organization of young, clonally expanding plants of the two dominant European dune grass species: sand couch (Elytrigia juncea) and marram grass (Ammophila arenaria) across a range of coastal dune environments (from Denmark to France). Our results reveal that, on average, sand couch deployed a more dispersed shoot organization than marram grass, which has a patchy (Lévy-like) organization. Whereas sand couch exhibited the same expansion strategy independent of environmental conditions, marram grass demonstrated a large intraspecific variation which correlated to soil organic matter, temperature and grain size. Shoot patterns ranged from a clumped organization correlating to relatively high soil organic matter contents, temperature and small grain sizes, to a patchy configuration with intermediate conditions, and a dispersed organization with low soil organic matter, temperature and large grain size. We conclude that marram grass is flexible in adjusting its engineering capacity in response to environmental conditions, while sand couch instead follows a fixed expansion strategy, illustrating that shoot organization results from the interaction of both species-specific and environmental-specific trait expression

    Aliovalent titanium substitution in layered mixed Li Ni–Mn–Co oxides for lithium battery applications

    Get PDF
    Improved electrochemical characteristics are observed for Li[Ni1/3Co1/3-yMyMn1/3]O2 cathode materials when M=Ti and y<0.07, compared to the baseline material, with up to 15percent increased discharge capacity

    Recovering the intrinsic shape of early-type galaxies

    Full text link
    We investigate how well the intrinsic shape of early-type galaxies can be recovered when both photometric and two-dimensional stellar kinematic observations are available. We simulate these observations with galaxy models that are representative of observed oblate fast-rotator to triaxial slow-rotator early-type galaxies. By fitting realistic triaxial dynamical models to these simulated observations, we recover the intrinsic shape (and mass-to-light ratio), without making additional (ad-hoc) assumptions on the orientation. For (near) axisymmetric galaxies the dynamical modelling can strongly exclude triaxiality, but the regular kinematics do not further tighten the constraint on the intrinsic flattening significantly, so that the inclination is nearly unconstrained above the photometric lower limit even with two-dimensional stellar kinematics. Triaxial galaxies can have additional complexity in both the observed photometry and kinematics, such as twists and (central) kinematically decoupled components, which allows the intrinsic shape to be accurately recovered. For galaxies that are very round or show no significant rotation, recovery of the shape is degenerate, unless additional constraints such as from a thin disk are available.Comment: 12 pages, 7 figures, PDFLaTeX, accepted to MNRAS, minor revision

    Tunable distribution of silica nanoparticles in water-borne coatings via strawberry supracolloidal dispersions

    Get PDF
    Hypothesis: Water-borne coatings are rapidly expanding as sustainable alternatives to organic solvent-borne systems. Inorganic colloids are often added to aqueous polymer dispersions to enhance the performance of water-borne coatings. However, these bimodal dispersions have many interfaces which can result in unstable colloids and undesirable phase separation. The covalent bonding between individual colloids, on a polymer-inorganic core-corona supracolloidal assembly, could reduce or suppress instability and phase separation during drying of coatings, advancing its mechanical and optical properties. Methods: Aqueous polymer-silica supracolloids with a core-corona strawberry configuration were used to precisely control the silica nanoparticles distribution within the coating. The interaction between polymer and silica particles was fine-tuned to obtain covalently bound or physically adsorbed supracolloids. Coatings were prepared by drying the supracolloidal dispersions at room temperature, and their morphology and mechanical properties were interconnected. Findings: Covalently bound supracolloids provided transparent coatings with a homogeneous 3D percolating silica nanonetwork. Supracolloids having physical adsorption only, resulted in coatings with a stratified silica layer at interfaces. The well-arranged silica nanonetworks strongly improve the storage moduli and water resistance of the coatings. These supracolloidal dispersions offer a new paradigm for preparing water-borne coatings with enhanced mechanical properties and other functionalities, like structural color.</p

    Estimating Black Hole Masses in Triaxial Galaxies

    Full text link
    Most of the super massive black hole mass estimates based on stellar kinematics use the assumption that galaxies are axisymmetric oblate spheroids or spherical. Here we use fully general triaxial orbit-based models to explore the effect of relaxing the axisymmetric assumption on the previously studied galaxies M32 and NGC 3379. We find that M32 can only be modeled accurately using an axisymmetric shape viewed nearly edge-on and our black hole mass estimate is identical to previous studies. When the observed 5 degrees kinematical twist is included in our model of NGC 3379, the best shape is mildly triaxial and we find that our best-fitting black hole mass estimate doubles with respect to the axisymmetric model. This particular black hole mass estimate is still within the errors of that of the axisymmetric model and consistent with the M-sigma relationship. However, this effect may have a pronounced impact on black hole demography, since roughly a third of the most massive galaxies are strongly triaxial.Comment: Accepted for publication in MNRAS. 11 pages, 9 figures. PDFlate

    First-principles prediction of redox potentials in transition-metal compounds with LDA+U

    Full text link
    First-principles calculations within the Local Density Approximation (LDA) or Generalized Gradient Approximation (GGA), though very successful, are known to underestimate redox potentials, such as those at which lithium intercalates in transition metal compounds. We argue that this inaccuracy is related to the lack of cancellation of electron self-interaction errors in LDA/GGA and can be improved by using the DFT+UU method with a self-consistent evaluation of the UU parameter. We show that, using this approach, the experimental lithium intercalation voltages of a number of transition metal compounds, including the olivine Lix_{x}MPO4_{4} (M=Mn, Fe Co, Ni), layered Lix_{x}MO2_{2} (x=x=Co, Ni) and spinel-like Lix_{x}M2_{2}O4_{4} (M=Mn, Co), can be reproduced accurately.Comment: 19 pages, 6 figures, Phys. Rev. B 70, 235121 (2004
    corecore