61 research outputs found

    CN− Secondary Ions Form by Recombination as Demonstrated Using Multi-Isotope Mass Spectrometry of 13C- and 15N-Labeled Polyglycine

    Get PDF
    We have studied the mechanism of formation CN− secondary ions under Cs+ primary ion bombardment. We have synthesized 13C and 15N labeled polyglycine samples with the distance between the two labels and the local atomic environment of the 13C label systematically varied. We have measured four masses in parallel: 12C, 13C, and two of 12C14N, 13C14N, 12C15N, and 13C15N. We have calculated the 13C/12C isotope ratio, and the different combinations of the CN isotope ratios (27CN/26CN, 28CN/27CN, and 28CN/26CN). We have measured a high 13C15N − secondary ion current from the 13C and 15N labeled polyglycines, even when the 13C and 15N labels are separated. By comparing the magnitude of the varied combinations of isotope ratios among the samples with different labeling positions, we conclude the following: CN− formation is in large fraction due to recombination of C and N; the CO double bond decreases the extent of CN− formation compared to the case where carbon is singly bonded to two hydrogen atoms; and double-labeling with 13C and 15N allows us to detect with high sensitivity the molecular ion 13C15N−

    Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism

    Full text link
    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For this, we generate synthetic metabolic profiles for benchmarking purposes based on a well-established model for red blood cell metabolism. A variety of data sets is generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We apply ARACNE, a mainstream transcriptional networks reverse engineering algorithm, to these data sets and observe performance comparable to that obtained in the transcriptional domain, for which the algorithm was originally designed.Comment: 14 pages, 3 figures. Presented at the DIMACS Workshop on Dialogue on Reverse Engineering Assessment and Methods (DREAM), Sep 200

    The structure of Synechococcus elongatus enolase reveals key aspects of phosphoenolpyruvate binding

    Get PDF
    A structure-function characterization of Synechococcus elongatus enolase (SeEN) is presented, representing the first structural report on a cyanobacterial enolase. X-ray crystal structures of SeEN in its apoenzyme form and in complex with phosphoenolpyruvate are reported at 2.05 and 2.30 Å resolution, respectively. SeEN displays the typical fold of enolases, with a conformationally flexible loop that closes the active site upon substrate binding, assisted by two metal ions that stabilize the negatively charged groups. The enzyme exhibits a catalytic efficiency of 1.2 × 105 M -1s-1for the dehydration of 2-phospho-d-glycerate, which is comparable to the kinetic parameters of related enzymes. These results expand the understanding of the biophysical features of these enzymes, broadening the toolbox for metabolic engineering applications.Fil: Gonzalez, Javier Marcelo. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Martí Arbona, Ricardo. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Chen, Julian C. H.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Unkefer, Clifford. Los Alamos National High Magnetic Field Laboratory; Estados Unido

    Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    Get PDF
    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy\u27s Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels

    The mbo Operon Is Specific and Essential for Biosynthesis of Mangotoxin in Pseudomonas syringae

    Get PDF
    Mangotoxin is an antimetabolite toxin produced by certain Pseudomonas syringae pv. syringae strains. This toxin is an oligopeptide that inhibits ornithine N-acetyl transferase, a key enzyme in the biosynthesis of ornithine and arginine. Previous studies have reported the involvement of the putative nonribosomal peptide synthetase MgoA in virulence and mangotoxin production. In this study, we analyse a new chromosomal region of P. syringae pv. syringae UMAF0158, which contains six coding sequences arranged as an operon (mbo operon). The mbo operon was detected in only mangotoxin-producing strains, and it was shown to be essential for the biosynthesis of this toxin. Mutants in each of the six ORFs of the mbo operon were partially or completely impaired in the production of the toxin. In addition, Pseudomonas spp. mangotoxin non-producer strains transformed with the mbo operon gained the ability to produce mangotoxin, indicating that this operon contains all the genetic information necessary for mangotoxin biosynthesis. The generation of a single transcript for the mbo operon was confirmed and supported by the allocation of a unique promoter and Rho-independent terminator. The phylogenetic analysis of the P. syringae strains harbouring the mbo operon revealed that these strains clustered together

    Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography

    No full text
    The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002–2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallography in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s
    corecore