We investigate the ability of algorithms developed for reverse engineering of
transcriptional regulatory networks to reconstruct metabolic networks from
high-throughput metabolite profiling data. For this, we generate synthetic
metabolic profiles for benchmarking purposes based on a well-established model
for red blood cell metabolism. A variety of data sets is generated, accounting
for different properties of real metabolic networks, such as experimental
noise, metabolite correlations, and temporal dynamics. These data sets are made
available online. We apply ARACNE, a mainstream transcriptional networks
reverse engineering algorithm, to these data sets and observe performance
comparable to that obtained in the transcriptional domain, for which the
algorithm was originally designed.Comment: 14 pages, 3 figures. Presented at the DIMACS Workshop on Dialogue on
Reverse Engineering Assessment and Methods (DREAM), Sep 200