134 research outputs found

    Protocol for the "Michigan Awareness Control Study": A prospective, randomized, controlled trial comparing electronic alerts based on bispectral index monitoring or minimum alveolar concentration for the prevention of intraoperative awareness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of intraoperative awareness with explicit recall is 1-2/1000 cases in the United States. The Bispectral Index monitor is an electroencephalographic method of assessing anesthetic depth that has been shown in one prospective study to reduce the incidence of awareness in the high-risk population. In the B-Aware trial, the number needed to treat in order to prevent one case of awareness in the high-risk population was 138. Since the number needed to treat and the associated cost of treatment would be much higher in the general population, the efficacy of the Bispectral Index monitor in preventing awareness in all anesthetized patients needs to be clearly established. This is especially true given the findings of the B-Unaware trial, which demonstrated no significant difference between protocols based on the Bispectral Index monitor or minimum alveolar concentration for the reduction of awareness in high risk patients.</p> <p>Methods/Design</p> <p>To evaluate efficacy in the general population, we are conducting a prospective, randomized, controlled trial comparing the Bispectral Index monitor to a non-electroencephalographic gauge of anesthetic depth. The total recruitment for the study is targeted for 30,000 patients at both low and high risk for awareness. We have developed a novel algorithm that is capable of real-time analysis of our electronic perioperative information system. In one arm of the study, anesthesia providers will receive an electronic page if the Bispectral Index value is >60. In the other arm of the study, anesthesia providers will receive a page if the age-adjusted minimum alveolar concentration is <0.5. Our minimum alveolar concentration algorithm is sensitive to both inhalational anesthetics and intravenous sedative-hypnotic agents.</p> <p>Discussion</p> <p>Awareness during general anesthesia is a persistent problem and the role of the Bispectral Index monitor in its prevention is still unclear. The Michigan Awareness Control Study is the largest prospective trial of awareness prevention ever conducted.</p> <p>Trial Registration</p> <p>Clinical Trial NCT00689091</p

    Phenomenology of ultrafine particle concentrations and size distribution across urban Europe

    Get PDF
    The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction

    Inter-annual trends of ultrafine particles in urban Europe

    Get PDF
    Ultrafine particles (UFP, those with diameters ≀ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5–11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations. PNSD datasets from 12 urban background (UB), 5 traffic (TR), 3 suburban background (SUB) and 1 regional background (RB) sites in 15 European cities and 1 in the USA were evaluated. The non-parametric Theil-Sen's method was used to detect monotonic trends. Meta-analyses were carried out to assess the overall trends and those for different environments. The results showed significant decreases in NO, NO2, BC, CO, and particle concentrations in the Aitken (25–100 nm) and the Accumulation (100–800 nm) modes, suggesting a positive impact of the implementation of EURO 5/V and 6/VI vehicle standards on European air quality. The growing use of Diesel Particle Filters (DPFs) might also have clearly reduced exhaust emissions of BC, PM, and the Aitken and Accumulation mode particles. However, as reported by prior studies, there remains an issue of poor control of Nucleation mode particles (smaller than 25 nm), which are not fully reduced with current DPFs, without emission controls for semi-volatile organic compounds, and might have different origins than road traffic. Thus, contrasting trends for Nucleation mode particles were obtained across the cities studied. This mode also affected the UFP and total PNC trends because of the high proportion of Nucleation mode particles in both concentration ranges. It was also found that the urban temperature increasing trends might have also influenced those of PNC, Nucleation and Aitken modes.</p
    • 

    corecore