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Abstract 12 

Concentrations of the air pollutants (NO2 and particulate matter) were measured for several months 13 

and at multiple locations inside and outside two enclosed railway stations in the United Kingdom – 14 

Edinburgh Waverly (EDB) and London King’s Cross (KGX) – which, respectively, had at the time 59% 15 

and 18% of their train services powered by diesel engines. Average concentrations of NO2 were 16 

above the 40 µg m-3 annual limit value outside the stations and were further elevated inside, 17 

especially at EDB. Concentrations of PM2.5 inside the stations were 30-40% higher at EDB than 18 

outside and up to 20% higher at KGX. Concentrations of both NO2 and PM2.5 were highest closer to 19 

the platforms, especially those with a higher frequency of diesel services. A random-forest 20 

regression model was used to quantify the impact of numbers of different types of diesel trains on 21 

measured concentrations allowing prediction of the impact of individual diesel-powered rolling 22 

stock.  23 

Abstract Art 24 

 25 
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 28 

Introduction 29 

Rail is usually considered a green mode of transport compared with road and air in terms of its 30 

relative impact on climate change (Givoni et al., 2009). However, rail services, particularly those 31 

operated by diesel-powered trains, also emit air pollutants: in the European Union (EU-27) diesel 32 

trains were estimated to contribute 2.0%, 2.8% and 2.5%, respectively, of mobile sources of nitrogen 33 

oxides, particulate matter <2.5 µm in diameter (PM2.5) and black carbon in 2005 (Borken-kleefeld 34 

and Ntziachristos, 2012). Diesel emissions are widely considered to be harmful to human health; in 35 

2012 the World Health Organisation classified diesel engine exhaust as carcinogenic (WHO-IARC, 36 

2012). In the United Kingdom (UK), although electrification of the rail network is expanding, only 37 

34% of the routes are electrified (Department for Transport, 2017) and the railway industry used 38 

around 700 million litres of diesel to run passenger and freight services (Office of Road and Rail, 39 

2017).  40 

The concentration of air pollutants in enclosed railway stations is partly influenced by the outdoor 41 

air drawn inside plus all the contributions from internal sources; these include NOx and particles 42 

from the exhaust of diesel-powered trains; particles generated by the wear of trains (e.g. wheels, 43 

brakes); and NOx and particles from cooking in food outlets (Chong et al., 2015). A number of studies 44 

have reported measurements of air quality in subway systems, for example in Stockholm (Johansson 45 

and Johansson, 2003), Helsinki (Aarnio et al., 2005), Seoul (Kim et al., 2008), New York (Vilcassim et 46 

al., 2014), Athens (Barmparesos et al., 2016), Rome(Perrino et al., 2015) and Barcelona (Martins et 47 

al., 2015; Querol et al., 2012), but these have focused on PM10 and PM2.5 due to the predominance 48 

of wear emissions in the absence of diesel trains on these networks. Fewer studies have been 49 

conducted in ground-level railway environments. In the UK air quality has been measured at London 50 

Paddington (Chong et al., 2015) and Birmingham New Street (Hickman et al., 2018) stations, but 51 

these were based on short campaigns (less than 7 days and 10 weeks, respectively) so assessment of 52 

concentrations relative to long-term limit values or against rolling stock characteristics was difficult. 53 

As there is currently no legislation regulating public exposure to the indoor concentrations of air 54 

pollutants, most studies in both subway and railway environments compared measured 55 

concentrations to limit values in outdoor air.  56 

The aim of this study was to characterize the impact of diesel-powered train emissions on 57 

concentrations of nitrogen dioxide (NO2) and PM2.5 and PM10 inside two enclosed stations in the UK, 58 

Edinburgh Waverley and London King’s Cross. Measurements were made for several months at 59 

multiple locations inside and also outside each station. A specific objective was to highlight the type 60 

of rolling stock that most influenced the concentrations measured inside, via a data mining 61 

approach. Decision trees are a common data mining approach, and have previously been applied in 62 

the railway industry, for example to improve rail network velocity (Li et al., 2014) and to evaluate 63 

service quality (de Oña et al., 2014; 2016). However, whilst they are simple to implement and 64 

interpretation is straightforward, the prediction accuracy can be low (James et al., 2013). Random-65 

forest (RF) is a machine-learning algorithm that can be used for classification or regression and 66 

represents an improvement in prediction accuracy compared to decision trees. RF produces multiple 67 

trees which are then combined to yield a single consensus prediction at the expense of some loss in 68 

interpretation (James et al., 2013). RF presents several advantages: it is a simple non-linear 69 
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regression model that requires few parameters to be chosen; it is robust to parameter 70 

specifications; it can handle high-order interactions among predictive variables; and it is robust to 71 

over-fitting (Faganeli Pucer and Štrumbelj, 2018). RF has been popularized in many areas in recent 72 

years, including in air quality applications, such as predicting PM2.5 concentrations from satellite 73 

imagery (Huang et al., 2018; Brokamp et al., 2018) and removing meteorological confounding in 74 

pollutant concentrations (Grange and Carslaw, 2019) for trend estimations (Faganeli Pucer and 75 

Štrumbelj, 2018); but not previously in the context presented here. 76 

 77 

Methods 78 

Experimental campaigns and measurements 79 
Monitoring was carried out at two UK railway stations: Edinburgh Waverley (EDB) and London King’s 80 

Cross (KGX). These are both large enclosed railway stations (without active ventilation) directly 81 

managed by Network Rail (rather than by train operating companies), with a large number of train 82 

movements a day but contrasting proportions of diesel-powered services. Averaged over the period 83 

August – December 2018, Edinburgh Waverley had 828 trains day-1, of which 59% were scheduled to 84 

run on diesel, whilst London Kings’ Cross had 420 trains day-1 of which 18% were scheduled to run on 85 

diesel. Most of the diesel-powered trains in Edinburgh Waverley were Sprinter Diesel Multiple Units 86 

(DMUs) (Class 15X and Class 17X) (83%) followed by High Speed Trains (HSTs) (6%), 220/221 87 

(Voyagers) (5%); and diesel locomotive or locomotive-hauled trains (5%). At London King’s Cross, 88 

around 62% of the diesel stock were HSTs and 33% were Class 180 Adelante (a diesel-hydraulic 89 

multiple-unit passenger train). EDB and KGX are both large enclosed stations of similar size. Plans of 90 

both stations are shown in Figure S1 and S2, respectively. EDB has both terminus and through tracks, 91 

with the primary openings for the through tracks at either end of the station, aligned with the main 92 

wind direction (south-west to north-east direction). There are two additional openings, the 93 

vehicular/pedestrian access ramps located north and south of ED3N and ED3 monitoring locations 94 

shown in Figure S1. There ramps are used by delivery vans and lorries but these predominantly occur 95 

at night, during station closure periods. KGX is a terminal station with the tracks 0 – 8 aligned in a 96 

north to south direction and housed under a double arched glazed roof (Figure S2). Platform 0, 97 

whilst under the main station roof, is partially enclosed with a lower roof. Platforms 9 to 11 are 98 

separated from the other set of tracks and positioned at an angle to the main station. These two 99 

areas are linked by a semi-circular departure concourse area (Figure S2). The primary external 100 

opening is where the trains enter and exit at the north end of the station. Other significant openings 101 

are created by the station access doors to the south side of the station. 102 

The measurements of NO2, PM10 and PM2.5 were undertaken from May to November 2018 at EDB 103 

and from August to December 2018 at KGX. The simultaneous multisite measurement of NO2 was 104 

made using Palmes-type passive diffusive tubes (PDTs) (Palmes et al., 1976).  These were exposed 105 

between 2–4 weeks at 8 locations inside each station, 3 locations outside EDB station, 2 outside 106 

KGX, and at one urban background site. The specific locations of the NO2 measurements inside and 107 

outside of both railway stations are shown in the Supplementary Information (Table S1–S2; Figure 108 

S1–S2). PDTs were deployed in triplicate for every exposure period. All triplicates showed good 109 

measurement consistency with an average intra-site coefficient of variation of 4.9% at EDB (range: 110 

3.1-7.6%) and 3.6% at KGX (range: 1.6-6.9%). The PDTs at the urban background sites were co-111 

located with a reference chemiluminescence instrument traceable to national metrological 112 

standards. In addition, to the PDT NO2 data, hourly NO2 concentrations were also measured inside 113 

each station with a reference chemiluminescence instrument (ENVEA, Environment AC31M, Poissy, 114 

France) traceable to national metrological standards. These measurements were made for a period 115 
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of 8 weeks at the ED4-OfficeDepot at EDB and for 6 weeks at the LO1-Platform0/1 location at KGX.  116 

The location at EDB was not close enough to a platform to permit specific analysis of relationships 117 

between NO2 and rolling stock characteristics. Extension of reference NO2 measurements at other 118 

locations within the stations were not possible due to power and space restrictions. 119 

PM10 and PM2.5 were measured using an Osiris Airborne Particle Monitor (Turnkey Instruments Ltd., 120 

Cheshire, UK) concurrently at four of the inside locations in each station, and at the urban 121 

background site (Figure S1; Figure S2). The Osiris instruments measure the particles suspended in 122 

the air in four fractions (total suspended particles, PM10, PM2.5 and PM1) by means of the light they 123 

scatter and from now on are referred to as optical particle counters (OPCs). Co-location of these 124 

monitors with a reference instrument (TEOM-FDMS, Thermo Scientific, Waltham, MA, US) was 125 

undertaken at the start and at the end of the measurement campaigns at the Marylebone Road 126 

national network monitoring station in central London (51°31’21’’N; 0°9’16.56’’W). The roadside 127 

location for the co-location was chosen due to the presence of small particles coming from vehicular 128 

diesel combustion, similar to the particular mix in the railway stations. Loss of volatile PM due to the 129 

heated inlet of the Osiris was corrected using a volatile correction model approach (Green et al., 130 

2009) and corrected measurements from OPCs correlated well to the reference concentrations 131 

(Figure S4) so no further correction was needed. Further details of the correction method are in the 132 

Supplementary Information. The 15-minute resolution Osiris PM10 and PM2.5 data were aggregated 133 

to hourly means.   134 

The timetables for the numbers of different type of trains operating in each station were obtained 135 

from www.realtimetrains.co.uk from July 2018 onwards. Railway industry representatives provided 136 

updated information where there were some mismatches between the rolling stock categories 137 

reported on the website and the actual trains in use.  138 

Hourly outdoor wind (speed and direction), temperature, pressure and relative humidity data were 139 

obtained from the NOAA ISD network using the R-package worldmet (Carslaw, 2019) for Edinburgh 140 

and London City airports, located at 10 km and 12.3 km from their respective railway stations (Figure 141 

S1-S2).  142 

Statistical analysis 143 
The station increment above the urban background concentration was used to quantify the 144 

contribution of internal sources, similar to the approach described by Lenschow (2001). This 145 

assumes that there is a background concentration in the station similar to the urban-wide 146 

background. This approach may present large uncertainty when using it especially at high time 147 

resolution (e.g. hourly) because one or both of the urban or station background measurements may 148 

be transiently affected by localised variations.  In this work, station increment in concentration 149 

variables are denoted by ‘Δ’. 150 

RF regression models were built to reproduce the hourly concentration in PM2.5 and NO2, and also in 151 

ΔPM2.5 and ΔNO2, as the dependent variables, respectively. Multiple explanatory variables were 152 

included in the RF models including information about train numbers and rolling stock, and 153 

meteorological conditions. The selection criteria to choose the explanatory variables was based on 154 

the trend in the hourly PM2.5 (and ΔPM2.5) versus the explanatory variable. The trend was evaluated 155 

by means of the Siegel’s Repeated Median Estimator. This is a nonparametric approach to linear 156 

regression that is robust to outliers in the dependent variable. All possible slopes between each 157 

point and the others is computed and the slope estimator is the median of these slopes. Only those 158 

explanatory variables that had a statistically significant slope were included in the RF model.  159 
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To avoid co-linearity, which can potentially lead to the wrong identification of the relevant 160 

predictors in the statistical model (Dormann et al., 2013), several RF models were built avoiding 161 

explanatory variables with correlation R > 0.7. Each RF was built using 500 trees and its performance 162 

evaluated by means of the correlation coefficient and the mean-square-error (MSE). 163 

For each RF regression model, partial dependence plots representing the marginal effect of the 164 

explanatory variables on the predicted outcome were produced. These quantify the relationship 165 

between the dependent variable and the explanatory variable and were used to quantify the impact 166 

of numbers of diesel trains and rolling stock types on the dependent variable. The slope of the 167 

reduced-major-axis (RMA) regression fit to the partial dependence plots was used to identify the 168 

rolling stock that should be prioritized for an emission reduction activity.  169 

Different levels of significance were considered in all the statistical procedures: p<0.001 (coded as 170 

***); p<0.01 (**); p<0.05 (*); and p<0.1 (+). 171 

Results and discussion 172 

Overall concentrations 173 
Table 1 presents a summary of the PDT NO2 and Osiris PM10 and PM2.5 concentrations for each 174 

location at each station. At EDB, PDT NO2 concentrations differed significantly between inside the 175 

station, outside the station and at the background site, with average concentrations across the 176 

measurement campaign for all locations of a given type of 86.5 µg m-3, 55.0 µg m-3 and 23.8 µg m-3 177 

(the reader is pointed to see the graphical abstract). Location ED14-Platform 14 had the highest NO2 178 

concentration averaged across all the exposure periods: 103.1 ± 7.8 µg m-3 (± 1 standard deviation). 179 

This location was close to several terminating railway lines. Other trackside measurement locations 180 

had slightly lower concentrations: ED2-Waverley steps (91.3 ± 4.4 µg m-3; i.e. 11% less) and ED1-181 

Platform 11 (77.3 ± 3.6 µg m-3; 25% less). Sites on the main concourse (ED3 and ED3N) had higher 182 

NO2 concentrations (89.7 and 94.7 µg m-3, respectively) than some other trackside sites. The 183 

concourse area is a somewhat enclosed area, bounded by two platforms and the main building 184 

which can lead up to the build-up of pollutants. Also, these sites are adjacent to the north access 185 

ramp into the station from Waverley Bridge (Figure S1). Sites ED4 and ED4S had the lowest NO2 186 

concentrations inside the station, consistent with these sites being the furthest from the busiest 187 

platforms.  188 

At KGX, average NO2 concentrations inside (71.4 µg m-3) and outside (71.0 µg m-3) the station were 189 

similar, but both were significantly higher than the urban background (36.0 µg m-3). The highest NO2 190 

concentrations were measured at sites closest to the main cluster of tracks (sites LO1, PL2/3, PL4, 191 

LO2, PL6/7 on Platforms 0–8), with an average of 78.3 ± 7.1 µg m-3, whereas the lowest 192 

concentrations were measured at sites on the concourse and the mezzanine, with an average of 52.7 193 

± 0.7 µg m-3 (32.7% less). Site LO3-Platform 9 had concentrations of NO2 in between these two 194 

groupings (66.8 ± 4.9 µg m-3) consistent with this location being within the platform area but with 195 

fewer tracks nearby.  196 

Comparing stations, the average NO2 concentrations at KGX were lower than at EDB (71.4 and 86.5 197 

µg m-3, respectively) despite urban background NO2 concentrations being higher in London (29.7 µg 198 

m-3) than in Edinburgh (13.7 µg m-3). The mean station increment in NO2 (ΔNO2) at EBD was 1.7 times 199 

higher than that measured at KGX (72.8 µg m-3 and 41.7 µg m-3, respectively). The higher ΔNO2 inside 200 

EDB is fully consistent with the factor 6 times greater numbers of diesel trains in EDB (~490 trains 201 

day-1) compared to KGX (~80 trains day-1). Average NO2 concentrations inside both stations exceeded 202 

the EU annual limit value of 40 µg m-3 set for outdoor air.  203 
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Breaches of the 200 µg m-3 hourly limit value for NO2 were assessed for the periods when hourly 204 

data were available. There were no breaches at EDB (May-June 2018; N = 2160 hours) but at KGX, 205 

where the measurements were closer to the platform, there were 29 breaches (Aug-Oct 2018; N = 206 

1566). The lack of breaches of the hourly limit value of NO2 at EDB is probably due to the distance 207 

between the measurement location and any track line.  208 

Temporal correlation coefficients between the PDT NO2 concentrations at EDB and the exposure-209 

averaged NO2 concentration from the reference analysers at the urban background sites was low 210 

and lacked significance (r ranged from -0.2 to 0.5) (data not shown). This supports the interpretation 211 

that the NO2 inside the station were dominated by strong local sources independent of the general 212 

background meteorology. The similar correlation analysis at KGX also showed no statistical 213 

significance but as the number of temporal NO2 observations was limited to only 4, this result may 214 

not be robust.  215 

On average, concentrations of particulate matter were similar in both stations (Table 1). For PM10, 216 

average concentrations ranged from 17 to 25 µg m-3 across the four inside locations at EDB, and 217 

from 18 to 30 µg m-3 for the four inside locations at KGX. For PM2.5, concentrations ranged from ~10 218 

to 15 µg m-3 at both stations. However, background concentrations of both PM10 and PM2.5 were 219 

slightly higher in London (15 and 12 µg m-3, respectively) than they were in Edinburgh (10 and 7 µg 220 

m-3).  Overall, the campaign-average concentrations of both PM10 and PM2.5 at all locations in both 221 

stations were below their respective EU annual limit values of 40 and 25 µg m-3, but PM2.5 222 

concentrations were above the WHO air quality guideline concentration of 10 g m-3. Substantial 223 

hour-to-hour variability and some highly elevated concentrations were observed at some locations. 224 

The highest PM10 concentrations were measured in EDB with a maximum hourly concentration of 225 

804 µg m-3 measured at ED1-Platform 11. The maximum PM10 concentration at KGX was only a 226 

quarter of that observed at EDB (170 µg m-3 at LO2-Platform 4). The highest PM2.5 hourly 227 

concentrations were measured at ED1-Platform 11 and ED2-Waverley Steps (117 µg m-3) whereas at 228 

the other locations in Edinburgh, the maximum concentrations were only half this value. At KGX, the 229 

maximum PM2.5 hourly concentration measured at LO3-Platform 9 (110 µg m-3) was twice that 230 

observed at the other monitoring locations.  231 
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Table 1. Summary statistics for the 4-weekly PDT NO2 concentrations and the hourly Osiris PM10 and PM2.5 concentrations for all locations inside and outside Edinburgh Waverley and London King’s Cross. N 232 
indicates the number of exposure periods for the NO2 PDT measurements or the number of hours of available data with PM measurements. All concentrations are in µg m-3. 233 

  NO2 PM10  PM2.5  

Station Code Mean (±1 s.d.) Range N Mean (± 1 
s.d.) 

Range N Mean (± 1 
s.d.) 

Range N 

Edinburgh 
Waverley 
(EDB) 

ED1 77.3 (±3.6) 73.3 - 82.5 8 24.2 (±28.5) 1.6 – 804 2841 11.9 (±8.2) 0.8 – 117 2841 

ED14 103 (±7.8) 91.1 - 114 8 -- -- -- -- -- -- 

ED2 91.3 (±4.4) 85.8 - 99.1 8 17.0 (±10.9) 1.4 – 180 4363 11.7 (±8.3) 0 – 117 4363 

ED3 89.7 (±8.0) 77.3 - 99.1 8 25.3 (±27.9) 1.9 – 335 2996 11.5 (±7.4) 0.8 - 64.7 2996 

ED3N 94.7 (±7.6) 80.7 - 101 8 -- -- -- -- -- -- 

ED3W 87.6 (±6.6) 76.6 - 95.0 8 -- -- -- -- -- -- 

ED4 72.4 (±6.8) 61.7 - 82.0 8 18.1 (±13.1) 1.2 – 222 3783 9.9 (±5.4) 0.5 – 60.0 3783 

ED4S 75.8 (±6.6) 66.3 - 85.7 8 -- -- -- -- -- -- 

PS 48.9 (±11.1) 41.6 - 62.0 8 -- -- -- -- -- -- 

WB 59.9 (±8.6) 47.3 - 82.4 8 -- -- -- -- -- -- 

MS 56.2 (±6.9) 45.4 - 67.6 8 -- -- -- -- -- -- 

ED5 23.8 (±4.2) 19.7 - 30.9 8 10.0 (±6.4) 0.3 - 78.3 4642 7.2 (±4.9) 0.2 – 62.9 4642 

London 
King’s Cross 
(KGX) 

LO1 71.4 (±11.1) 54.9 - 78.3 4 18.6 (±8.0) 2.1 - 85.0 2662 14.5 (±6.8) 1.8 – 60.2 2662 

PL2/3 87.1 (±5.3) 79.8 - 92.5 4 -- -- -- -- -- -- 

PL2/3N 70.5 (± --) 70.5 - 70.5 1 -- -- -- -- -- -- 

PL4 75.4 (±4.6) 70.3 - 79.9 4 -- -- -- -- -- -- 

LO2 79.1 (±6.4) 69.8 - 84.4 4 30.3 (±11.7) 5.7 – 170 2658 13.6 (±6.3) 2.3 – 47.1 2658 

PL6/7 86.0 (±6.3) 76.8 - 90.8 4 -- -- -- -- -- -- 

LO3 66.8 (±4.9) 60.7 - 71.7 4 18.2 (±10.1) 2.9 – 141 1679 11.5 (±7.3) 1.7 – 110 1679 

CC 53.2 (±5.6) 45.2 - 57.8 4 -- -- -- -- -- -- 

LO4 52.2 (±4.6) 45.9 - 56.2 4 20.2 (±7.8) 2.6 – 74 2657 12.7 (±6.2) 1.8 – 51.3 2657 

FC17 75.9 (±8.3) 64.6 - 82.3 4 -- -- -- -- -- -- 

FC2 66.1 (±8.4) 55.3 - 73.3   4 -- -- -- -- -- -- 

IS6 36.0 (±5.2) 30.6 - 41.0  3 -- -- -- -- -- -- 

KX8 -- -- -
- 

15.4 (±7.5) 2.4 – 72.7 2709 12 (±6.5) 1.2 – 53.4 2709 

-- measurements not made at that location 234 
s.d. standard deviation 235 

 236 



 

 

Each of the measurement locations within the stations had a different degree of influence of diesel 237 

fumes as indicated by the increments in coarse and fine fractions. The coarse fraction increment 238 

(ΔPM10-2.5) dominated the PM10 increment at all measurement locations inside the station (>70%), 239 

except at LO1-Platform0/1 at KGX, where 79% of ΔPM10 was in the fine fraction, and at ED2-240 

Waverley steps at EDB, where 65% of ΔPM10 was in the fine fraction. The latter locations are 241 

therefore interpreted as the locations in the stations with greater influence from diesel fumes. This 242 

is also shown in Figure 1, where scatter plots of the ΔPM10 and ΔPM2.5 data averaged over each NO2 243 

PDT exposure period against the corresponding location ΔNO2 concentration are displayed. Both 244 

stations are combined. Correlation was considerably stronger between ΔPM2.5 and ΔNO2 (R2 = 0.54, p 245 

<0.001) than between ΔPM10 and ΔNO2 (R2 = 0.12, p <0.05). This suggests that internal PM2.5 and NO2 246 

shared common source(s), i.e. exhaust emissions from diesel trains. The relationship between ΔPM10 247 

vs ΔNO2 was likely not as strong due to the more diverse sources of coarse PM not relating to 248 

directly to NO2 emissions (e.g. wheel and rail wear, resuspension, construction, people). Figure 1B 249 

also shows that measurements from KGX were lower both in ΔNO2 and ΔPM2.5 which is entirely 250 

consistent with the lower number of diesel trains at KGX compared to EDB.  251 

 252 

 253 
Figure 1: Increments in PM10 (A) and increments in PM2.5 (B) versus increments in NO2 in Edinburgh Waverley and London 254 
King’s Cross stations. Each point corresponds to an exposure time for an NO2 PDT measurement. Dotted straight lines 255 
denote the reduced-major-axis regression lines. 256 
 257 

Influence of trains on air pollutant increments 258 
The ΔNO2 and ΔPM2.5 variables at the trackside locations showed good correlations with the number 259 

of diesel train services at the adjacent platform during the measurement period: R2 = 0.72 (p < 260 

0.001) (Figure 2A) and R2 = 0.47 (p < 0.01) (Figure 2C), respectively, with the significant positive 261 

slopes indicating an increase of increments with an increasing number of diesel trans. However, 262 

ΔPM10 showed no such correlation (R2 = 0.005, Figure 2B). When correlating absolute concentrations 263 

against the number of diesel trains, the correlation for NO2 was lower (R2 = 0.51; p < 0.001) and 264 

PM2.5 showed no correlation (R2 = 0.16; p > 0.1) (Figure S5). This further supports the conclusion that 265 

the inside-station increments of these two pollutants is strongly associated with a common source of 266 

diesel-train emissions, but also indicates that whilst the diesel trains are the dominant source for 267 

within-station NO2 (as noted earlier) they are less important as a within-station source for PM2.5 for 268 

which general background concentrations are an important factor. This latter point is also consistent 269 

with the substantially lower increments above urban background for PM2.5 than for NO2. Other 270 

possible indoor sources of PM2.5 that might influence the station variability might include cooking 271 



 

 

aerosols from the station food stalls and secondary organic aerosols that might form in the station 272 

environment. Neither ΔNO2 nor ΔPM10 were correlated with the number of electric trains (Figures 273 

2D and 2E, respectively). The statistically significant negative correlation of ΔPM2.5 with the number 274 

of electric trains (R2 = 0.70; p < 0.001, Figure 2F), and non-significant negative relationship of NO2 275 

with number of electric trains, is likely due to electric trains displacing diesel trains in the timetabled 276 

slots rather than any other impact on reducing the concentrations. 277 

 278 

 279 
Figure 2: Relation between increments in NO2, PM10 and PM2.5 and the number of diesel or electric trains on the adjacent 280 
platform during the measurement period. Each point corresponds to the exposure times for NO2 PDT. Data from 20 July. 281 
Dotted straight lines denote the reduced-major-axis regression lines. 282 
 283 

Temporal variability 284 

The hourly PM2.5 data available at five trackside locations in each station (2 at EDB and 3 at KGX) 285 

permits comparison between average diurnal cycles of PM2.5 and rail stock movements (Figure 3). 286 

Diurnal patterns in both differed between both stations. The highest ΔPM2.5 of >10 µg m-3 on 287 

average was measured in the early afternoon at ED2-WaverleySteps (Figure 3C), but the hourly 288 

variability in ΔPM2.5 did not correlate well with the frequency of diesel trains (R2 = 0.14) (Figure 3A). 289 

This was also the case at ED1–Platform11, for which R2 = 0.009. At KGX, ΔPM2.5 increased from 0 to 290 

~4 µg m-3 in the early morning at both LO-Platform0/1 and LO2-Platform4/5, coincidental with the 291 

presence of diesel trains (Figure 3F). An association between ΔPM2.5 and diesel trains was 292 

particularly pronounced at LO3-Platform9 after 10.00 when the number of diesel trains substantially 293 

increased and ΔPM2.5 increased from 0 to ~12 µg m-3. The mean hourly variation in ΔPM2.5 at the KGX 294 

trackside locations showed moderate to high correlations with the mean hourly variation in the 295 

number of diesel trains: R2 = 0.45 (LO1-Platform0/1), R2 = 0.61 (LO2-Platform4/5) and R2 = 0.47 (LO3-296 

Platform9). The mean hourly ΔNO2 at KGX LO1-Platform0/1 measured during the six-week period 297 

showed a better correlation with the number of diesel trains (R2 = 0.79, Figure 3G) than ΔPM2.5. 298 



 

 

Meteorological variables also varied depending on the hour of the day. Warmer, windier and drier 299 

conditions were observed during the central hours of the day (Figure 3D, 3H). The mean hourly 300 

variation in ΔPM2.5 showed good correlations (R2 > 0.54) with the mean hourly variation in 301 

temperature and wind speed at ED2-Waverley steps, LO1-Platform0/1 and LO2-Platform4/5. ΔPM2.5 302 

showed a negative correlation to the relative humidity with higher concentration with drier 303 

conditions at the same locations. ΔPM2.5 at ED1-Platform10 and LO3-Platform9 was not correlated to 304 

any of the meteorological variables tested except for LO3-Platform9 and pressure. 305 

 306 
Figure 3. Average number of total, diesel and electric trains per hour at Edinburgh Waverley and London King’s Cross; 307 
number of diesel trains and increment in PM2.5 (ΔPM2.5) concentrations in the tracksides with available measurements; and 308 
mean hourly variation of the meteorological conditions (temperature, relative humidity, wind speed and pressure) as 309 
measured outside the stations (normalised levels).  310 
 311 

The lack of correlation between PM2.5 and the number of diesel trains in EDB may be explained by 312 

the configuration of the station, which although fully roofed does have through tracks and is 313 

therefore open at the two ends with the main track lines aligned with the main wind direction 314 

(south-west to north-east). This might enhance the dispersion of diesel fumes. The correlation 315 

between PM2.5 and meteorological parameters such as temperature and wind speed at ED2-316 

WaverleySteps is explained by this measurement location being situated a few metres above the 317 

tracks; vertical movement of the diesel plumes to this location are therefore enhanced at higher 318 

temperatures and wind speeds. Conversely, at KGX, the main tracksides were perpendicular to the 319 

main wind direction, and the station was fully closed at one side (terminal station).  320 

Random-forest modelling for PM2.5  321 
A regression random-forest model to predict hourly concentrations of PM2.5 was built for each 322 

station. The explanatory variables used in each model were selected based on the Siegel repeated 323 

medians, selecting those showing a significant regression on the hourly PM2.5 concentrations (Table 324 

S3–S4). At EDB, the effect of the diesel rolling stock and the meteorological conditions was different 325 

on the PM2.5 measured at ED1-Platform11 compared to the PM2.5 at ED2-WaverleySteps. 326 

Furthermore, ED1-Platform11 had a low data capture. Therefore, only the data from ED2-327 

WaverleySteps was used to build the RF regression model at EDB. At KGX, data from LO1-328 



 

 

Platforms0/1 and LO2-Platforms4/5 were combined to build the RF regression model because both 329 

locations showed similar trends between variables (Table S4). 330 

The performance of the RF models for ED2-WaverleySteps for hourly PM2.5 concentrations was 331 

moderate, with R2 ~0.50 and large RMSE of 4.6–4.8 µg m-3 (Table S5). The most influential 332 

explanatory variables in all models were the concentration of PM2.5 in the urban background, 333 

temperature and wind direction (Figure S8-S10). This indicates that the PM2.5 measured at ED2-334 

WaverleySteps was predominantly explained by the ambient background concentration (consistent 335 

with inference from other analyses of the data), with influence also from the transport of diesel 336 

emissions to the measurement site (in turn dependent on both the wind direction, controlling 337 

advection of emissions from other platforms; and temperature, controlling turbulent transport of 338 

emissions from the trains to the measurement location). The number of diesel trains at other 339 

platforms had greater importance than the diesel trains at the adjacent platform (Figure S9). For the 340 

model considering the type of rolling stock adjacent to the platform (model#2), these were the 341 

variables with the least importance (Figure S10) and the order of association was Sprinters > Diesel 342 

locomotives > Voyager > HST.  343 

Background PM2.5 and meteorological conditions are independent of rail management activities and 344 

therefore cannot be explicitly controlled within the station. Focusing on those variables that can be 345 

actively controlled inside the station, the partial dependency plots shown in Figure 4 indicate that at 346 

ED2-WaverleySteps, reducing the number of diesel trains at the platform adjacent to the monitoring 347 

site would lead to the largest reduction in PM2.5 concentrations at the measurement location (0.25 348 

µg m-3 per diesel train on average) and that the rolling stock associated with the greatest reduction 349 

are Sprinters (reduction of 0.18 µg m-3 per train on average). The reduction of diesel 350 

locomotive/locomotives hauled trains would also be associated with a reduction of PM2.5 351 

concentrations measured at ED2-WaverleySteps by 0.18 µg m-3 train-1 (Figure 4).  352 

 353 
Figure 4. Partial dependency of hourly PM2.5 concentrations at ED2-WaverleySteps on the numbers and types of diesel trains 354 
per hour. The red dashed lines are RMA regression fits. 355 



 

 

The performance of the RF models to predict the PM2.5 concentrations at KGX was good, with R2 356 

~0.80 and low RMSE (2.7–2.9 µg m-3) (Table S6). The PM2.5 background concentration and the wind 357 

direction were the most important variables in all models (Figure S12-Figure S14). The importance of 358 

variables related to the rolling stock appear in the middle of the ranks and they were ordered as 359 

diesel trains at other platforms > diesel trains at the platform, and Class 180 > HST.  360 

Figure 5 shows that, for PM2.5 at KGX, the partial dependencies for diesel trains, diesel trains at the 361 

platform and diesel trains at other platforms all increased as number of trains increased from 0 to 4 362 

per hour, but then levelled off as the number of trains increased further. One possible explanation 363 

may be a reduction of the idling time when increasing the frequency of trains per hour as the actual 364 

time that each train individually remains in the station is reduced. This levelling off in partial 365 

dependency with number of diesel trains was not observed in the equivalent partial dependencies at 366 

ED2-WaverleySteps (Figure 4. Partial dependency of hourly PM2.5 concentrations at ED2-367 

WaverleySteps on the numbers and types of diesel trains per hour. For the rolling stock next to the 368 

monitoring sites, PM2.5 increased linearly as the frequency increased. RMA regression was calculated 369 

for train frequencies up to 4 services per hour and all showed good correlations (R2 > 0.71) that were 370 

statistically significant (p <0.1) (Figure 5). Decreasing the number of diesel trains at platforms 0-8 by 371 

one per hour was associated with a decrease in PM2.5 of 0.57 µg m-3 on average; and reducing the 372 

number of diesel trains at other platforms was more effective than reducing the number of diesel 373 

trains next to the measurement site. This is explained by the fact that emissions from all platforms 374 

contribute to the levels in the area between platforms 0-8. Reducing the number of Class 180 trains 375 

was associated with a reduction in PM2.5 concentration of 0.40 µg m-3 per train on average, whilst 376 

reducing HSTs was associated with a reduction of 0.29 µg m-3 per train on average (Figure 5).  377 

 378 
Figure 5. Partial dependency of hourly PM2.5 concentrations at London King’s Cross on the numbers and types of diesel 379 
trains per hour. The red dashed lines are RMA regression fits to the data up to and including 4 trains per hour. 380 
 381 



 

 

Random-forest modelling for ΔPM2.5  382 
The RF regression modelling was also applied to hourly ΔPM2.5 for ED2-WaverlySteps at EDB and for 383 

LO1/LO2 at KGX. However, the performance of these models was lower than those for PM2.5: R2 = 384 

0.43–0.50 (EDB) and 0.23–0.28 (KGX); and RMSE = 4.4–4.7 µg m-3 (EDB) and 2.9–3.0 µg m-3 (KGX). 385 

The lower performance of the statistical model for ΔPM2.5 compared with the statistically significant 386 

interpretations for ΔPM2.5 when using longer period averaging (as shown in Figure 2) is probably due 387 

to the unsuitability of the incremental approach for very short time periods, i.e. for hourly data. One 388 

issue is that ambient background concentrations may be impacted by localised sources or dispersion 389 

affects in the short-term and therefore not always be representative of the background 390 

concentrations in the stations. Furthermore, the discrete train information (counts of different train 391 

types per hour) does not fully describe the emissions from these trains, merely their presence. The 392 

model for ΔPM2.5 might be further improved by the inclusion of train idling information.  393 

Random-forest modelling for NO2 and ΔNO2  394 

Random-forest modelling was also undertaken for the six-week period with high-time resolved 395 

(hourly) data for NO2 at LO1-Platform0/1 at KGX. The same model formulations as per PM2.5 were 396 

implemented. Overall, the models predicted both NO2 and ΔNO2 moderately (R2 = 0.48 – 0.52) and 397 

with large RSME (31.9 – 33.2 µg m-3). However, as for the RF analyses on PM2.5 measurements, the 398 

partial dependencies for the NO2 concentrations also indicated that Class 180 was associated with 399 

larger NO2 concentrations at LO1-Platform 0/1 (23.7 µg m-3 per train) compared to HST trains (8.6 µg 400 

m-3 per train) (Figure 6) and therefore its replacement or emissions management should be 401 

prioritised.  402 

 403 
Figure 6. Partial dependency of hourly NO2 concentrations at LO1-Platform 0/1 at London King’s Cross on the numbers and 404 
types of diesel trains per hour. 405 
 406 



 

 

Conclusions 407 

This study demonstrated that whilst 4-week averaged pollutant measurements allowed a focus on 408 

the internal sources and factors influencing the pollutant incremental concentrations independent 409 

of hour-to-hour variability, long-term averaging obscures the useful insight that can be derived from 410 

hourly correlations between pollutants, train movement and individual train types. Overall, this 411 

study has provided clear evidence that diesel-powered trains increase concentrations of NO2 and 412 

PM2.5 in enclosed stations to levels that exceed WHO guidelines for their concentrations in ambient 413 

air. In particular, the diesel-powered rolling stock types contributing most to PM2.5 levels within both 414 

stations were identified. However, this study did not have enough information to discern how much 415 

of their contribution was due to their absolute emissions or because of the way those particular 416 

trains operated in the station, for example increased idling time or position of the engine along the 417 

platform when stationary. Other studies have observed that diesel-powered trains also lead to 418 

increased air pollutant concentrations within the passenger carriage (Andersen et al., 2019; Jeong et 419 

al., 2017). Their replacement with cleaner powered trains is therefore encouraged to reduce 420 

exposure both in the station and on board.  421 
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