367 research outputs found

    The scientific study of inspiration in the creative process: challenges and opportunities

    Get PDF
    Inspiration is a motivational state that compels individuals to bring ideas into fruition. Creators have long argued that inspiration is important to the creative process, but until recently, scientists have not investigated this claim. In this article, we review challenges to the study of creative inspiration, as well as solutions to these challenges afforded by theoretical and empirical work on inspiration over the past decade. First, we discuss the problem of definitional ambiguity, which has been addressed through an integrative process of construct conceptualization. Second, we discuss the challenge of how to operationalize inspiration. This challenge has been overcome by the development and validation of the Inspiration Scale (IS), which may be used to assess trait or state inspiration. Third, we address ambiguity regarding how inspiration differs from related concepts (creativity, insight, positive affect) by discussing discriminant validity. Next, we discuss the preconception that inspiration is less important than perspiration (effort), and we review empirical evidence that inspiration and effort both play important- but different-roles in the creative process. Finally, with many challenges overcome, we argue that the foundation is now set for a new generation of research focused on neural under pinnings. We discuss potential challenges to and opportunities for the neuroscientific study of inspiration. A better understanding of the biological basis of inspiration will illuminate the process through which creative ideas fire the soul, such that individuals are compelled to transform ideas into products and solutions that may benefit society

    Crowd behaviour during high-stress evacuations in an immersive virtual environment

    Get PDF
    Understanding the collective dynamics of crowd movements during stressful emergency situations is central to reducing the risk of deadly crowd disasters. Yet, their systematic experimental study remains a challenging open problem due to ethical and methodological constraints. In this paper, we demonstrate the viability of shared 3D virtual environments as an experimental platform for conducting crowd experiments with real people. In particular, we show that crowds of real human subjects moving and interacting in an immersive 3D virtual environment exhibit typical patterns of real crowds as observed in real-life crowded situations. These include the manifestation of social conventions and the emergence of self-organized patterns during egress scenarios. High-stress evacuation experiments conducted in this virtual environment reveal movements characterized by mass herding and dangerous overcrowding as they occur in crowd disasters. We describe the behavioral mechanisms at play under such extreme conditions and identify critical zones where overcrowding may occur. Furthermore, we show that herding spontaneously emerges from a density effect without the need to assume an increase of the individual tendency to imitate peers. Our experiments reveal the promise of immersive virtual environments as an ethical, cost-efficient, yet accurate platform for exploring crowd behaviour in high-risk situations with real human subjects.Comment: 17 pages, 5 figure

    Phonics Instruction

    Get PDF
    One of the main research questions answered through this poster presentation is as follows: Is it possible to teach phonics in non-phonemic language? Can we in fact teach students to read phonetically when everyday language does not always follow the rules of phonics. Phonics instruction is essential for beginning readers both with and without disabilities. Phonics instruction has evolved over time from traditional approaches to ever advancing and engaging interactive methods, most recentlyvia interactive tablets. Tablets support the delivery of instruction to students in the area of phonics. Overall, research conducted for this poster presentation highlighted effective strategies and key components of phonics instruction in the modern day classroom

    Table-driven software architecture for a stitching system

    Get PDF
    Native code for a CNC stitching machine is generated by generating a geometry model of a preform; generating tool paths from the geometry model, the tool paths including stitching instructions for making stitches; and generating additional instructions indicating thickness values. The thickness values are obtained from a lookup table. When the stitching machine runs the native code, it accesses a lookup table to determine a thread tension value corresponding to the thickness value. The stitching machine accesses another lookup table to determine a thread path geometry value corresponding to the thickness value

    Automated gantry-type stitching system

    Get PDF
    A stitching system includes a gantry that is movable along a material support table. Mounted to the gantry are a plurality of stitching heads and bobbins. The stitching heads are individually controllable in a z-direction, and the bobbins are individually controllable in the z-direction. Each stitching head is paired with a bobbin. Each pair of stitching heads and the bobbins is controlled synchronously in the z-direction. The stitching system is well-suited for stitching preforms of aircraft wing covers and other preforms having variable thickness and compound, contoured three-dimensional surfaces

    Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp. nov. and Propionivibrio militaris, sp. nov.

    Get PDF
    Novel dissimilatory perchlorate-reducing bacteria (DPRB) were isolated from enrichments conducted under conditions different from those of all previously described DPRB. Strain LT-1T was enriched using medium buffered at pH 6.6 with 2-(N-morpholino)ethanesulfonic acid (MES) and had only 95% 16S rRNA gene identity with its closest relative, Azonexus caeni. Strain MPT was enriched in the cathodic chamber of a perchlorate-reducing bioelectrical reactor (BER) and together with an additional strain, CR (99% 16S rRNA gene identity), had 97% 16S rRNA gene identity with Propionivibrio limicola. The use of perchlorate and other electron acceptors distinguished strains MPT and CR from P. limicola physiologically. Strain LT-1T had differences in electron donor utilization and optimum growth temperatures from A. caeni. Strains LT-1T and MPT are the first DPRB to be described in the Betaproteobacteria outside of the Dechloromonas and Azospira genera. On the basis of phylogenetic and physiological features, strain LT-1T represents a novel genus in the Rhodocyclaceae; strain MPT represents a novel species within the genus Propionivibrio. The names Dechlorobacter hydrogenophilus gen. nov., sp. nov and Propionivibrio militaris sp. nov. are proposed

    Evaluation of vascular aging on measures of cardiac function and mechanical efficiency: insights from in-silico modeling

    Get PDF
    IntroductionThis study evaluated the hypothesis that vascular aging (VA) reduces ventricular contractile function and mechanical efficiency (ME) using the left ventricular pressure-volume (PV) construct.MethodsA previously published in-silico computational model (CM) was modified to evaluate the hypothesis in two phases. In phase I, the CM included five settings of aortic compliance (CA) from normal to stiff, studied at a heart rate of 80 bpm, and phase II included the normal to stiff CA settings evaluated at 60, 100, and 140 bpm. The PV construct provided steady-state and transient data through a simulated vena caval occlusion (VCO). The steady-state data included left ventricular volumes (EDV and ESV), stroke work (SW), and VCO provided the PV area (PVA) data in addition to the three measures of contractile state (CS): end-systolic pressure-volume relationship (ESPVR), dP/dtmax-EDV and preload recruitable stroke work (PRSW). Finally, ME was calculated with the SW/PVA parameter.ResultsIn phase I, EDV and ESV increased, as did SW and PVA. The impact on the CS parameters demonstrated a small decrease in ESPVR, no change in dP/dtmax-EDV, and a large increase in PRSW. ME decreased from 71.5 to 60.8%, respectively. In phase II, at the normal and stiff CA settings, across the heart rates studied, EDV and ESV decreased, ESPVR and dP/dtmax-EDV increased and PRSW decreased. ME decreased from 76.4 to 62.6% at the normal CA and 65.8 to 53.2% at the stiff CA.DiscussionThe CM generated new insights regarding how the VA process impacts the contractile state of the myocardium and ME
    • …
    corecore