44 research outputs found

    Conformational and thermal characterization of left ventricle remodeling post-myocardial infarction

    Get PDF
    Adverse cardiac remodeling after myocardial infarction (MI) causes impaired ventricular function and heart failure. Histopathological characterization is commonly used to detect the location, size and shape of MI sites. However, the information about chemical composition, physical structure and molecular mobility of peri- and infarct zones post-MI is rather limited. The main objective of this work was to explore the spatiotemporal biochemical and biophysical alterations of key cardiac components post-MI. The FTIR spectra of healthy and remote myocardial tissue shows amides A, I, II and III associated with proteins in freeze-died tissue as major absorptions bands. In infarcted myocardium, the spectrum of these main absorptions was deeply altered. FITR evidenced an increase of the amide A band and the distinct feature of the collagen specific absorption band at 1338cm-1 in the infarct area at 21days post-MI. At 21days post-MI, it also appears an important shift of amide I from 1646cm-1 to 1637cm-1 that suggests the predominance of the triple helical conformation in the proteins. The new spectra bands also indicate an increase in proteoglycans, residues of carbohydrates in proteins and polysaccharides in ischemic areas. Thermal analysis indicates a deep increase of unfreezable water/freezable water in peri- and infarcted tissues. In infarcted tissue is evidenced the impairment of myofibrillar proteins thermal profile and the emergence of a new structure. In conclusion, our results indicate a profound evolution of protein secondary structures in association with collagen deposition and reorganization of water involved in the scar maturation of peri- and infarct zones post-MI

    Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers

    Development of Bioactive Patch for Maintenance of Implanted Cells at the Myocardial Infarcted Site

    Full text link
    [EN] Ischemia produced as a result of myocardial infarction might cause moderate or severe tissue death. Studies under development propose grafting stem cells into the affected area and we hypothesize that this mechanism could be enhanced by the application of a "bioactive implant." The implant herein proposed consists of a thin porous elastomeric membrane, filled with self-assembling nanofibers and human subcutaneous adipose tissue derived progenitor cells. We describe the development and characterization of two elastomeric membranes: poly(ethyl acrylate) (PEA) and poly(caprolactone 2-(methacryloyloxy) ethyl ester) (PCLMA). Both are a good material support to deliver cells within a soft self-assembling peptide and are elastic enough to withstand the stresses arising from the heartbeat. Both developed composites (PEA and PCLMA, combined with self-assembling peptide) equally facilitate the propagation of electrical pulses and maintain their genetic profile of the seeded cells. Preliminary studies with small animal models suggest that, at short times, the bioimplant shows good adhesion with the myocardium. After three days cells loaded in the patch remain alive at the implanted site. We propose that the bioactive patch (elastomeric membranes with self-assembling peptide and cells) could increase the efficacy of future cardiac cell therapy by improving cell immobilization and survival at the affected site.The authors wish to thank the Department of Cardiac Surgery (Hospital Germans Trias i Pujol, Badalona) for their collaboration in obtaining human samples, Dr. Bago for his kind contribution in the cell transduction process and BLI analysis, and Joan Gilabert from Biomaterials Laboratory (GEMAT, IQS-School of Engineering) who kindly helped them with wettability measurements. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 229239. This work was also supported by Grants from Ministerio de Educacion y Ciencia (SAF2011-30067-C02-01 and M. Arnal-Pastor FPU 2009-1870 grant), Red de Terapia Celular-TerCel (RD12/0019/0029), Red Cardio-vascular (RD12/0042/0047), and Fundacio La Marato de TV3 (122232).Castells-Sala, C.; Vallés Lluch, A.; Soler-Botija, C.; Arnal Pastor, MP.; Martínez Ramos, C.; Fernandez-Muinos, T.; Mari-Buye, N.... (2015). Development of Bioactive Patch for Maintenance of Implanted Cells at the Myocardial Infarcted Site. Journal of Nanomaterials. (804017). https://doi.org/10.1155/2015/804017S80401

    Channeled polymeric scaffolds with polypeptide gel filling for lengthwise guidance of neural cells

    Full text link
    CNS damages are often irreversible since neurons of the central nervous system are unable to regenerate after an injury. As a new strategy within the nervous system tissue engineering, multifunctional systems based on two different biomaterials to support axonal guidance in damaged connective tracts have been developed herein. These systems are composed of a channeled scaffold made of ethyl acrylate and hydroxyethyl acrylate copolymer, P(EA-co-HEA), with parallel tubular micropores, combined with an injectable and in situ gelable self-assembling polypeptide (RAD16-I) as pores filler. The polymer scaffold is intended to provide a three-dimensional context for axon growth; subsequently, its morphology and physicochemical parameters have been determined by scanning electron microscopy, density measurements and compression tests. Besides, the hydrogel acts as a cell-friendly nanoenvironment while it creates a gradient of bioactive molecules (nerve growth factor, NGF) along the scaffolds channels; the chemotactic effect of NGF has been evaluated by a quantitative ELISA assay. These multifunctional systems have shown ability to keep circulating NGF, as well as proper short-term in vitro biological response with glial cells and neural progenitors.The authors acknowledge funding through the Spanish Ministerio de Ciencia e Innovacion (MAT2011-28791-C03-02 and -03). Dr. J.M. Garcia Verdugo (Department of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutive Biology, Universitat de Valencia) is thanked for kindly providing the cells employed in this work.Conejero García, Á.; Vilarino-Feltrer, G.; Martínez Ramos, C.; Monleón Pradas, M.; Vallés Lluch, A. (2015). Channeled polymeric scaffolds with polypeptide gel filling for lengthwise guidance of neural cells. European Polymer Journal. 70:331-341. doi:10.1016/j.eurpolymj.2015.07.033S3313417

    Glioblastoma Therapy with Cytotoxic Mesenchymal Stromal Cells Optimized by Bioluminescence Imaging of Tumor and Therapeutic Cell Response

    Get PDF
    Genetically modified adipose tissue derived mesenchymal stromal cells (hAMSCs) with tumor homing capacity have been proposed for localized therapy of chemo- and radiotherapy resistant glioblastomas. We demonstrate an effective procedure to optimize glioblastoma therapy based on the use of genetically modified hAMSCs and in vivo non invasive monitoring of tumor and therapeutic cells. Glioblastoma U87 cells expressing Photinus pyralis luciferase (Pluc) were implanted in combination with hAMSCs expressing a trifunctional Renilla reniformis luciferase-red fluorescent protein-thymidine kinase reporter in the brains of SCID mice that were subsequently treated with ganciclovir (GCV). The resulting optimized therapy was effective and monitoring of tumor cells by bioluminescence imaging (BLI) showed that after 49 days GCV treatment reduced significantly the hAMSC treated tumors; by a factor of 104 relative to controls. Using a Pluc reporter regulated by an endothelial specific promoter and in vivo BLI to image hAMSC differentiation we gained insight on the therapeutic mechanism. Implanted hAMSCs homed to tumor vessels, where they differentiated to endothelial cells. We propose that the tumor killing efficiency of genetically modified hAMSCs results from their association with the tumor vascular system and should be useful vehicles to deliver localized therapy to glioblastoma surgical borders following tumor resection

    Interaction between acrylic substrates and RAD16-I peptide in its self-assembling

    Full text link
    [EN] Self-assembling peptides (SAP) are widely used as scaffolds themselves, and recently as fillers of microporous scaffolds, where the former provides a cell-friendly nanoenvironment and the latter improves its mechanical properties. The characterization of the interaction between these short peptides and the scaffold material is crucial to assess the potential of such a combined system. In this work, the interaction between poly(ethyl acrylate) (PEA) and 90/10 ethyl acrylate-acrylic acid copolymer P(EAcoAAc) with the SAP RAD16-I has been followed using a bidimensional simplified model. By means of the techniques of choice (congo red staining, atomic force microscopy (AFM), and contact angle measurements) the interaction and self-assembly of the peptide has proven to be very sensitive to the wettability and electro-negativity of the polymeric substrate.The authors acknowledge funding through the European Commission FP7 project RECATABI (NMP3-SL-2009-229239), and from the Spanish Ministerio de Ciencia e Innovacion through projects MAT2011-28791-C03-02 and -03. This work was also supported by the Spanish Ministerio de Educacion through M. Arnal-Pastor FPU 2009-1870 grant. The authors acknowledge the assistance and advice of Electron Microscopy Service of the UPV.Arnal Pastor, MP.; González-Mora, D.; García-Torres, F.; Monleón Pradas, M.; Vallés Lluch, A. (2016). Interaction between acrylic substrates and RAD16-I peptide in its self-assembling. Journal of Polymer Research. 23(9):173-184. https://doi.org/10.1007/s10965-016-1069-3S173184239Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4):442–450Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34:663–672Zhang S, Altman M (1999) Peptide self-assembly in functional polymer science and engineering. Reac Func Polym 41:91–102Zhang S, Gelain F, Zhao X (2005) Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 15(5):413–420Zhang S, Zhao X, Spirio L, PuraMatrix (2005) Self-assembling peptide nanofiber scaffolds. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue Engineering. CRC Press, Boca Raton, FL, pp. 217–238Sieminski AL, Semino CE, Gong H, Kamm RD (2008) Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J Biomed Mater Res A 87(2):494–504Quintana L, Fernández Muiños T, Genove E, Del Mar Olmos M, Borrós S, Semino CE (2009) Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment. Tissue Eng Part A 15(1):45–54Garreta E, Genové E, Borrós S, Semino CE (2006) Osteogenic differentiation of mouse embryonic stem cells and mouse embryonic fibroblasts in a three-dimensional self-assembling peptide scaffold. Tissue Eng 12(8):2215–2227Semino CE, Merok JR, Crane GG, Panagiotakos G, Zhang S (2003) Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71:262–270Thonhoff JR, Lou DI, Jordan PM, Zhao X, Compatibility WP (2008) Of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187:42–51Tokunaga M, Liu ML, Nagai T, Iwanaga K, Matsuura K, Takahashi T, Kanda M, Kondo N, Wang P, Naito AT, Komuro I (2010) Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. J Mol Cell Cardiol 49(6):972–983Takei J (2006) 3-Dimensional cell culture scaffold for everyone: drug screening. Tissue engineering and cancer biology. AATEX 11(3):170–176McGrath AM, Novikova LN, Novikov LN, Wiberg MBD (2010) ™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration. Brain Res Bull 83(5):207–213Wang W, Itoh S, Matsuda A, Aizawa T, Demura M, Ichinose S, Shinomiya K, Tanaka J (2008) Enhanced nerve regeneration through a bilayered chitosan tube: The effect ofintroduction of glycine spacer into the CYIGSR sequence. J Biomed Mater Res Part A 85:919–928Sargeant TD, Guler MO, Oppenheimer SM, Mata A, Satcher RL, Dunand DC, Stupp SI (2008) Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials 29(2):161–171Vallés-Lluch A, Arnal-Pastor M, Martínez-Ramos C, Vilariño-Feltrer G, Vikingsson L, Castells-Sala C, Semino CE, Monleón Pradas M (2013) Combining self-assembling peptide gels with three-dimensional elastomer scaffolds. Acta Biomater 9(12):9451–9460Valles-Lluch A, Arnal-Pastor M, Martinez-Ramos C, Vilarino-Feltrer G, Vikingsson L, Monleon Pradas M (2013) Grid polymeric scaffolds with polypeptide gel filling as patches for infarcted tissue regeneration. Conf Proc IEEE Eng Med Biol Soc 2013:6961–6964Soler-Botija C, Bagó JR, Llucià-Valldeperas A, Vallés-Lluch A, Castells-Sala C, Martínez-Ramos C, Fernández-Muiños T, Chachques JC, Monleón Pradas M, Semino CE, Bayes-Genis A (2014) Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration. Am J Transl Res 6(3):291–301Martínez-Ramos M, Arnal-Pastor M, Vallés-Lluch A, Monleón Pradas M (2015) Peptide gel in a scaffold as a composite matrix for endothelial cells. J Biomed Mater Res Part A 103 A:3293–3302Rico P, Rodríguez Hernández JC, Moratal D, Altankov G, Monleón Pradas M, Salmerón-Sánchez M (2009) Substrate-induced assembly of fibronectin into networks: influence of surface chemistry and effect on osteoblast adhesion. Tissue Eng Part A 15(11):3271–3281Gugutkov D, Altankov G, Rodríguez Hernández JC, Monleón Pradas M, Salmerón Sánchez M (2010) Fibronectin activity on substrates with controlled -OH density. J Biomed Mater Res A 92(1):322–331Rodríguez Hernández JC, Salmerón Sánchez M, Soria JM, Gómez Ribelles JL, Monleón Pradas M (2007) Substrate chemistry-dependent conformations of single laminin molecules on polymer surfaces are revealed by the phase signal of atomic force microscopy. Biophys J 93(1):202–207Cantini M, Rico P, Moratal D, Salmerón-Sánchez M (2012) Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter 8:5575–5584Anselme K, Ponche A, Bigerelle M (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H J Eng Med 224:1487–1507Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A 99(8):5133–5138Busscher HJ, Vanpelt AWJ, Deboer P, Dejong HP, Arends J (1984) The effect of surface roughening of polymers on measured contact angles of liquids. Colloids Surf 9:319–331Birdi, KS. (1997) Surface tension of polymers. In: Yildrim Erbil H, ed. Handbook of surface and colloid chemistry CRC Press, Boca Raton, p. 292.Collier JH (2003) MessersmithPB.Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjug Chem 14(4):748–755Kakiuchi Y, Hirohashi N, Murakami-Murofushi K (2013) The macroscopic structure of RADA16 peptide hydrogel stimulates monocyte/macrophage differentiation in HL60 cells via cholesterol synthesis. BiochemBiophys Res Commun 433(3):298–304Pérez-Garnes M, González-García C, Moratal D, Rico P, Salmerón-Sánchez M (2011) Fibronectin distribution on demixednanoscale topographies. Int J Artif Organs 34(1):54–63Salmerón-Sánchez M, Rico P, Moratal D, Lee TT, Schwarzbauer JE, García AJ (2011) Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials 32(8):2099–2105Ye Z, Zhang H, Luo H, Wang S, Zhou Q, DU X, et al. (2008) Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I. J Pept Sci 14:152–162Keselowsky BG, Collard DM, García AJ (2004) Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25:5947–5954Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S (2002) Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J Biomed Mater Res 59:84–99Coelho NM, González-García C, Planell JA, Salmerón-Sánchez M, Altankov G (2010) Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur Cell Mater 19:262–272Briz N, Antolinos-Turpin CM, Alió J, Garagorri N, Gómez Ribelles JL, Gómez-Tejedor JA (2013) Fibronectin fixation on poly(ethyl acrylate)-based copolymers. J Biomed Mater Res B Appl Biomater 101(6):991–997Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747Soria JM, Martínez Ramos C, Bahamonde O, García Cruz DM, Salmerón Sánchez M, García Esparza MA, Casas C, Guzmán M, Navarro X, Gómez Ribelles JL, García Verdugo JM, Monleón Pradas M, Barcia JA (2007) Influence of the substrate's hydrophilicity on the in vitro Schwann cells viability. J Biomed Mater Res A 83(2):463–470Van Krevelen, DW. (1997) Properties of polymers. Chapter 13 mechanical properties of solid polymers. Elsevier, pp. 367–43

    Accumulation of poly(A) RNA in nuclear granules enriched in Sam68 in motor neurons from the SMNA7 mouse model of SMA

    Get PDF
    Spinal muscular atrophy (SMA) is a severe motor neuron (MN) disease caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene, which results in reduced levels of the SMN protein and the selective degeneration of lower MNs. The best-known function of SMN is the biogenesis of spliceosomal snRNPs, the major components of the pre-mRNA splicing machinery. Therefore, SMN deficiency in SMA leads to widespread splicing abnormalities. We used the SMN?7 mouse model of SMA to investigate the cellular reorganization of polyadenylated mRNAs associated with the splicing dysfunction in MNs. We demonstrate that SMN deficiency induced the abnormal nuclear accumulation in euchromatin domains of poly(A) RNA granules (PARGs) enriched in the splicing regulator Sam68. However, these granules lacked other RNA-binding proteins, such as TDP43, PABPN1, hnRNPA12B, REF and Y14, which are essential for mRNA processing and nuclear export. These effects were accompanied by changes in the alternative splicing of the Sam68-dependent Bcl-x and Nrnx1 genes, as well as changes in the relative accumulation of the intron-containing Chat, Chodl, Myh9 and Myh14 mRNAs, which are all important for MN functions. PARG-containing MNs were observed at presymptomatic SMA stage, increasing their number during the symptomatic stage. Moreover, the massive accumulations of poly(A) RNA granules in MNs was accompanied by the cytoplasmic depletion of polyadenylated mRNAs for their translation. We suggest that the SMN-dependent abnormal accumulation of polyadenylated mRNAs and Sam68 in PARGs reflects a severe dysfunction of both mRNA processing and translation, which could contribute to SMA pathogenesis.This work was supported by grants from: “Dirección General de Investigación” of Spain (BFU2014-54754-P and SAF2015-70801-R, cofinanced by FEDER) and “Instituto de Investigación Marqués de Valdecilla-IDIVAL (NVAL17/22). Dr. Tapia is the recipient of a grant from SMA Europe and FundAME (Spain)
    corecore