4,235 research outputs found
Corrigendum to "The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer and thermosphere" [2011, A&A, 527, A110]
An error was detected in the code used for the analysis of the HD209458b
sodium profile (Vidal-Madjar et al. 2011). Here we present an updated T-P
profile and briefly discuss the consequences.Comment: Published in Astronomy & Astrophysics, 533, C
HST/STIS Optical Transit Transmission Spectra of the hot-Jupiter HD209458b
We present the transmission spectra of the hot-Jupiter HD209458b taken with
the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Our
analysis combines data at two resolutions and applies a complete pixel-by-pixel
limb-darkening correction to fully reveal the spectral line shapes of
atmospheric absorption features. Terrestrial-based Na I and H I contamination
are identified which mask the strong exoplanetary absorption signature in the
Na core, which we find reaches total absorption levels of ~0.11% in a 4.4 Ang
band. The Na spectral line profile is characterized by a wide absorption
profile at the lowest absorption depths, and a sharp transition to a narrow
absorption profile at higher absorption values. The transmission spectra also
shows the presence of an additional absorber at ~6,250 Ang, observed at both
medium and low resolutions. We performed various limb-darkening tests,
including using high precision limb-darkening measurements of the sun to
characterize a general trend of Atlas models to slightly overestimate the
amount of limb-darkening at all wavelengths, likely due to the limitations of
the model's one-dimensional nature. We conclude that, despite these
limitations, Atlas models can still successfully model limb-darkening in high
signal-to-noise transits of solar-type stars, like HD209458, to a high level of
precision over the entire optical regime (3,000-10,000 Ang) at transit phases
between 2nd and 3rd contact.Comment: 18 pages, 11 figures, Accepted to Ap
A single-photon sampling architecture for solid-state imaging
Advances in solid-state technology have enabled the development of silicon
photomultiplier sensor arrays capable of sensing individual photons. Combined
with high-frequency time-to-digital converters (TDCs), this technology opens up
the prospect of sensors capable of recording with high accuracy both the time
and location of each detected photon. Such a capability could lead to
significant improvements in imaging accuracy, especially for applications
operating with low photon fluxes such as LiDAR and positron emission
tomography.
The demands placed on on-chip readout circuitry imposes stringent trade-offs
between fill factor and spatio-temporal resolution, causing many contemporary
designs to severely underutilize the technology's full potential. Concentrating
on the low photon flux setting, this paper leverages results from group testing
and proposes an architecture for a highly efficient readout of pixels using
only a small number of TDCs, thereby also reducing both cost and power
consumption. The design relies on a multiplexing technique based on binary
interconnection matrices. We provide optimized instances of these matrices for
various sensor parameters and give explicit upper and lower bounds on the
number of TDCs required to uniquely decode a given maximum number of
simultaneous photon arrivals.
To illustrate the strength of the proposed architecture, we note a typical
digitization result of a 120x120 photodiode sensor on a 30um x 30um pitch with
a 40ps time resolution and an estimated fill factor of approximately 70%, using
only 161 TDCs. The design guarantees registration and unique recovery of up to
4 simultaneous photon arrivals using a fast decoding algorithm. In a series of
realistic simulations of scintillation events in clinical positron emission
tomography the design was able to recover the spatio-temporal location of 98.6%
of all photons that caused pixel firings.Comment: 24 pages, 3 figures, 5 table
GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy
We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran
Telescopio Canarias (GTC). The time series observations were performed using
long-slit spectroscopy of XO-2 and a nearby reference star with the OSIRIS
instrument, enabling differential specrophotometric transit lightcurves capable
of measuring the exoplanet's transmission spectrum. Two optical low-resolution
grisms were used to cover the optical wavelength range from 3800 to 9300{\AA}.
We find that sub-mmag level slit losses between the target and reference star
prevent full optical transmission spectra from being constructed, limiting our
analysis to differential absorption depths over ~1000{\AA} regions. Wider long
slits or multi-object grism spectroscopy with wide masks will likely prove
effective in minimising the observed slit-loss trends. During both transits, we
detect significant absorption in the planetary atmosphere of XO-2b using a
50{\AA} bandpass centred on the Na I doublet, with absorption depths of
Delta(R_pl/R_star)^2=0.049+/-0.017 % using the R500R grism and 0.047+/-0.011 %
using the R500B grism (combined 5.2-sigma significance from both transits). The
sodium feature is unresolved in our low-resolution spectra, with detailed
modelling also likely ruling out significant line-wing absorption over an
~800{\AA} region surrounding the doublet. Combined with narrowband photometric
measurements, XO-2b is the first hot Jupiter with evidence for both sodium and
potassium present in the planet's atmosphere.Comment: 9 pages, 10 figures, 1 table, accepted for publication in MNRA
Recommended from our members
Languages and Learning at Key Stage 2: A Longitudinal Study Final Report
In 2006, The Open University, the University of Southampton and Canterbury Christ Church University were commissioned by the then Department for Education and Skills (DfES), now Department for Children, Schools and Families (DCSF) to conduct a three-year longitudinal study of languages learning at Key Stage 2 (KS2). The qualitative study was designed to explore provision, practice and developments over three school years between 2006/07 and 2008/09 in a sample of primary schools and explore children’s achievement in oracy and literacy, as well as the possible broader cross-curricular impact of languages learning
Pressure dependence of the Verwey transition in magnetite: an infrared spectroscopic point of view
We investigated the electronic and vibrational properties of magnetite at
temperatures from 300 K down to 10 K and for pressures up to 10 GPa by
far-infrared reflectivity measurements. The Verwey transition is manifested by
a drastic decrease of the overall reflectance and the splitting of the phonon
modes as well as the activation of additional phonon modes. In the whole
studied pressure range the down-shift of the overall reflectance spectrum
saturates and the maximum number of phonon modes is reached at a critical
temperature, which sets a lower bound for the Verwey transition temperature
T. Based on these optical results a pressure-temperature phase
diagram for magnetite is proposed.Comment: 5 pages, 4 figures; accepted for publication in J. Appl. Phy
Heat capacity of the quantum magnet TiOCl
Measurements of the heat capacity C(T,H) of the one-dimensional quantum
magnet TiOCl are presented for temperatures 2K < T < 300K and magnetic fields
up to 5T. Distinct anomalies at 91K and 67K signal two subsequent phase
transitions. The lower of these transitions clearly is of first order and seems
to be related to the spin degrees of freedom. The transition at 92K probably
involves the lattice and/or orbital moments. A detailed analysis of the data
reveals that the entropy change through both transitions is surprisingly small
(~ 0.1R), pointing to the existence strong fluctuations well into the
non-ordered high-temperature phase. No significant magnetic field dependence
was detected.Comment: 4 pages, 2 figure
- …