4,235 research outputs found

    Corrigendum to "The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer and thermosphere" [2011, A&A, 527, A110]

    Full text link
    An error was detected in the code used for the analysis of the HD209458b sodium profile (Vidal-Madjar et al. 2011). Here we present an updated T-P profile and briefly discuss the consequences.Comment: Published in Astronomy & Astrophysics, 533, C

    HST/STIS Optical Transit Transmission Spectra of the hot-Jupiter HD209458b

    Get PDF
    We present the transmission spectra of the hot-Jupiter HD209458b taken with the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Our analysis combines data at two resolutions and applies a complete pixel-by-pixel limb-darkening correction to fully reveal the spectral line shapes of atmospheric absorption features. Terrestrial-based Na I and H I contamination are identified which mask the strong exoplanetary absorption signature in the Na core, which we find reaches total absorption levels of ~0.11% in a 4.4 Ang band. The Na spectral line profile is characterized by a wide absorption profile at the lowest absorption depths, and a sharp transition to a narrow absorption profile at higher absorption values. The transmission spectra also shows the presence of an additional absorber at ~6,250 Ang, observed at both medium and low resolutions. We performed various limb-darkening tests, including using high precision limb-darkening measurements of the sun to characterize a general trend of Atlas models to slightly overestimate the amount of limb-darkening at all wavelengths, likely due to the limitations of the model's one-dimensional nature. We conclude that, despite these limitations, Atlas models can still successfully model limb-darkening in high signal-to-noise transits of solar-type stars, like HD209458, to a high level of precision over the entire optical regime (3,000-10,000 Ang) at transit phases between 2nd and 3rd contact.Comment: 18 pages, 11 figures, Accepted to Ap

    A single-photon sampling architecture for solid-state imaging

    Full text link
    Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as LiDAR and positron emission tomography. The demands placed on on-chip readout circuitry imposes stringent trade-offs between fill factor and spatio-temporal resolution, causing many contemporary designs to severely underutilize the technology's full potential. Concentrating on the low photon flux setting, this paper leverages results from group testing and proposes an architecture for a highly efficient readout of pixels using only a small number of TDCs, thereby also reducing both cost and power consumption. The design relies on a multiplexing technique based on binary interconnection matrices. We provide optimized instances of these matrices for various sensor parameters and give explicit upper and lower bounds on the number of TDCs required to uniquely decode a given maximum number of simultaneous photon arrivals. To illustrate the strength of the proposed architecture, we note a typical digitization result of a 120x120 photodiode sensor on a 30um x 30um pitch with a 40ps time resolution and an estimated fill factor of approximately 70%, using only 161 TDCs. The design guarantees registration and unique recovery of up to 4 simultaneous photon arrivals using a fast decoding algorithm. In a series of realistic simulations of scintillation events in clinical positron emission tomography the design was able to recover the spatio-temporal location of 98.6% of all photons that caused pixel firings.Comment: 24 pages, 3 figures, 5 table

    GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy

    Get PDF
    We present two transits of the hot-Jupiter exoplanet XO-2b using the Gran Telescopio Canarias (GTC). The time series observations were performed using long-slit spectroscopy of XO-2 and a nearby reference star with the OSIRIS instrument, enabling differential specrophotometric transit lightcurves capable of measuring the exoplanet's transmission spectrum. Two optical low-resolution grisms were used to cover the optical wavelength range from 3800 to 9300{\AA}. We find that sub-mmag level slit losses between the target and reference star prevent full optical transmission spectra from being constructed, limiting our analysis to differential absorption depths over ~1000{\AA} regions. Wider long slits or multi-object grism spectroscopy with wide masks will likely prove effective in minimising the observed slit-loss trends. During both transits, we detect significant absorption in the planetary atmosphere of XO-2b using a 50{\AA} bandpass centred on the Na I doublet, with absorption depths of Delta(R_pl/R_star)^2=0.049+/-0.017 % using the R500R grism and 0.047+/-0.011 % using the R500B grism (combined 5.2-sigma significance from both transits). The sodium feature is unresolved in our low-resolution spectra, with detailed modelling also likely ruling out significant line-wing absorption over an ~800{\AA} region surrounding the doublet. Combined with narrowband photometric measurements, XO-2b is the first hot Jupiter with evidence for both sodium and potassium present in the planet's atmosphere.Comment: 9 pages, 10 figures, 1 table, accepted for publication in MNRA

    Pressure dependence of the Verwey transition in magnetite: an infrared spectroscopic point of view

    Get PDF
    We investigated the electronic and vibrational properties of magnetite at temperatures from 300 K down to 10 K and for pressures up to 10 GPa by far-infrared reflectivity measurements. The Verwey transition is manifested by a drastic decrease of the overall reflectance and the splitting of the phonon modes as well as the activation of additional phonon modes. In the whole studied pressure range the down-shift of the overall reflectance spectrum saturates and the maximum number of phonon modes is reached at a critical temperature, which sets a lower bound for the Verwey transition temperature Tv_{\mathrm{v}}. Based on these optical results a pressure-temperature phase diagram for magnetite is proposed.Comment: 5 pages, 4 figures; accepted for publication in J. Appl. Phy

    Heat capacity of the quantum magnet TiOCl

    Full text link
    Measurements of the heat capacity C(T,H) of the one-dimensional quantum magnet TiOCl are presented for temperatures 2K < T < 300K and magnetic fields up to 5T. Distinct anomalies at 91K and 67K signal two subsequent phase transitions. The lower of these transitions clearly is of first order and seems to be related to the spin degrees of freedom. The transition at 92K probably involves the lattice and/or orbital moments. A detailed analysis of the data reveals that the entropy change through both transitions is surprisingly small (~ 0.1R), pointing to the existence strong fluctuations well into the non-ordered high-temperature phase. No significant magnetic field dependence was detected.Comment: 4 pages, 2 figure
    corecore