99 research outputs found
Polarizing Double Negation Translations
Double-negation translations are used to encode and decode classical proofs
in intuitionistic logic. We show that, in the cut-free fragment, we can
simplify the translations and introduce fewer negations. To achieve this, we
consider the polarization of the formul{\ae}{} and adapt those translation to
the different connectives and quantifiers. We show that the embedding results
still hold, using a customized version of the focused classical sequent
calculus. We also prove the latter equivalent to more usual versions of the
sequent calculus. This polarization process allows lighter embeddings, and
sheds some light on the relationship between intuitionistic and classical
connectives
Large Scale In Silico Screening on Grid Infrastructures
Large-scale grid infrastructures for in silico drug discovery open
opportunities of particular interest to neglected and emerging diseases. In
2005 and 2006, we have been able to deploy large scale in silico docking within
the framework of the WISDOM initiative against Malaria and Avian Flu requiring
about 105 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These
achievements demonstrated the relevance of large-scale grid infrastructures for
the virtual screening by molecular docking. This also allowed evaluating the
performances of the grid infrastructures and to identify specific issues raised
by large-scale deployment.Comment: 14 pages, 2 figures, 2 tables, The Third International Life Science
Grid Workshop, LSGrid 2006, Yokohama, Japan, 13-14 october 2006, to appear in
the proceeding
The Safe Lambda Calculus
Safety is a syntactic condition of higher-order grammars that constrains
occurrences of variables in the production rules according to their
type-theoretic order. In this paper, we introduce the safe lambda calculus,
which is obtained by transposing (and generalizing) the safety condition to the
setting of the simply-typed lambda calculus. In contrast to the original
definition of safety, our calculus does not constrain types (to be
homogeneous). We show that in the safe lambda calculus, there is no need to
rename bound variables when performing substitution, as variable capture is
guaranteed not to happen. We also propose an adequate notion of beta-reduction
that preserves safety. In the same vein as Schwichtenberg's 1976
characterization of the simply-typed lambda calculus, we show that the numeric
functions representable in the safe lambda calculus are exactly the
multivariate polynomials; thus conditional is not definable. We also give a
characterization of representable word functions. We then study the complexity
of deciding beta-eta equality of two safe simply-typed terms and show that this
problem is PSPACE-hard. Finally we give a game-semantic analysis of safety: We
show that safe terms are denoted by `P-incrementally justified strategies'.
Consequently pointers in the game semantics of safe lambda-terms are only
necessary from order 4 onwards
An algorithmic approach to the existence of ideal objects in commutative algebra
The existence of ideal objects, such as maximal ideals in nonzero rings,
plays a crucial role in commutative algebra. These are typically justified
using Zorn's lemma, and thus pose a challenge from a computational point of
view. Giving a constructive meaning to ideal objects is a problem which dates
back to Hilbert's program, and today is still a central theme in the area of
dynamical algebra, which focuses on the elimination of ideal objects via
syntactic methods. In this paper, we take an alternative approach based on
Kreisel's no counterexample interpretation and sequential algorithms. We first
give a computational interpretation to an abstract maximality principle in the
countable setting via an intuitive, state based algorithm. We then carry out a
concrete case study, in which we give an algorithmic account of the result that
in any commutative ring, the intersection of all prime ideals is contained in
its nilradical
Virtual Screening on Large Scale Grids
PCSV, article in press in Parallel ComputingLarge scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against malaria and avian influenza requiring about 100 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large scale grids for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large scale deployment
Structural brain changes in patients with post-COVID fatigue: a prospective observational study
BACKGROUND: Post-COVID syndrome is a severe long-term complication of COVID-19. Although fatigue and cognitive complaints are the most prominent symptoms, it is unclear whether they have structural correlates in the brain. We therefore explored the clinical characteristics of post-COVID fatigue, describe associated structural imaging changes, and determine what influences fatigue severity. METHODS: We prospectively recruited 50 patients from neurological post-COVID outpatient clinics (age 18-69 years, 39f/8m) and matched non-COVID healthy controls between April 15 and December 31, 2021. Assessments included diffusion and volumetric MR imaging, neuropsychiatric, and cognitive testing. At 7.5 months (median, IQR 6.5-9.2) after the acute SARS-CoV-2 infection, moderate or severe fatigue was identified in 47/50 patients with post-COVID syndrome who were included in the analyses. As a clinical control group, we included 47 matched multiple sclerosis patients with fatigue. FINDINGS: Our diffusion imaging analyses revealed aberrant fractional anisotropy of the thalamus. Diffusion markers correlated with fatigue severity, such as physical fatigue, fatigue-related impairment in everyday life (Bell score) and daytime sleepiness. Moreover, we observed shape deformations and decreased volumes of the left thalamus, putamen, and pallidum. These overlapped with the more extensive subcortical changes in MS and were associated with impaired short-term memory. While fatigue severity was not related to COVID-19 disease courses (6/47 hospitalised, 2/47 with ICU treatment), post-acute sleep quality and depressiveness emerged as associated factors and were accompanied by increased levels of anxiety and daytime sleepiness. INTERPRETATION: Characteristic structural imaging changes of the thalamus and basal ganglia underlie the persistent fatigue experienced by patients with post-COVID syndrome. Evidence for pathological changes to these subcortical motor and cognitive hubs provides a key to the understanding of post-COVID fatigue and related neuropsychiatric complications. FUNDING: Deutsche Forschungsgemeinschaft (DFG) and German Ministry of Education and Research (BMBF)
Fingolimod therapy in multiple sclerosis leads to the enrichment of a subpopulation of aged NK cells
Fingolimod is an approved oral treatment for relapsing–remitting multiple sclerosis (RRMS) that modulates agonistically the sphingosin-1-phosphate receptor (S1PR), inhibiting thereby the egress of lymphocytes from the lymph nodes. In this interventional prospective clinical phase IV trial, we longitudinally investigated the impact of fingolimod on frequencies of NK cell subpopulations by flow cytometry in 17 RRMS patients at baseline and 1, 3, 6, and 12 months after treatment initiation. Clinical outcome was assessed by the Expanded Disability Status Scale (EDSS) and annualized relapse rates (ARR). Over the study period, median EDSS remained stable from month 3 to month 12, and ARR decreased compared to ARR in the 24 months prior treatment. Treatment was paralleled by an increased frequency of circulating NK cells, due primarily to an increase in CD56(dim)CD94(low) mature NK cells, while the CD56(bright) fraction and CD127(+) innate lymphoid cells (ILCs) decreased over time. An unsupervised clustering algorithm further revealed that a particular fraction of NK cells defined by the expression of CD56(dim)CD16(++)KIR(+/-)NKG2A(-)CD94(-)CCR7(+/-)CX(3)CR1(+/-)NKG2C(-)NKG2D(+)NKp46(-)DNAM1(++)CD127(+) increased during treatment. This specific phenotype might reflect a status of aged, fully differentiated, and less functional NK cells. Our study confirms that fingolimod treatment affects both NK cells and ILC. In addition, our study suggests that treatment leads to the enrichment of a specific NK cell subset characterized by an aged phenotype. This might limit the anti-microbial and anti-tumour NK cell activity in fingolimod-treated patients
Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands
The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands
A roadmap to improve the quality of atrial fibrillation management:proceedings from the fifth Atrial Fibrillation Network/European Heart Rhythm Association consensus conference
At least 30 million people worldwide carry a diagnosis of atrial fibrillation (AF), and many more suffer from undiagnosed, subclinical, or 'silent' AF. Atrial fibrillation-related cardiovascular mortality and morbidity, including cardiovascular deaths, heart failure, stroke, and hospitalizations, remain unacceptably high, even when evidence-based therapies such as anticoagulation and rate control are used. Furthermore, it is still necessary to define how best to prevent AF, largely due to a lack of clinical measures that would allow identification of treatable causes of AF in any given patient. Hence, there are important unmet clinical and research needs in the evaluation and management of AF patients. The ensuing needs and opportunities for improving the quality of AF care were discussed during the fifth Atrial Fibrillation Network/European Heart Rhythm Association consensus conference in Nice, France, on 22 and 23 January 2015. Here, we report the outcome of this conference, with a focus on (i) learning from our 'neighbours' to improve AF care, (ii) patient-centred approaches to AF management, (iii) structured care of AF patients, (iv) improving the quality of AF treatment, and (v) personalization of AF management. This report ends with a list of priorities for research in AF patients
Recommended from our members
The Belle II physics book
The Belle II detector will provide a major step forward in precision heavy flavor physics, quarkonium and exotic states, searches for dark sectors, and many other areas. The sensitivity to a large number of key observables can be improved by about an order of magnitude compared to the current measurements, and up to two orders in very clean search measurements. This increase in statistical precision arises not only due to the increased luminosity, but also from improved detector efficiency and precision for many channels. Many of the most interesting observables tend to have very small theoretical uncertainties that will therefore not limit the physics reach. This book has presented many new ideas for measurements, both to elucidate the nature of current anomalies seen in flavor, and to search for new phenomena in a plethora of observables that will become accessible with the Belle II dataset. The simulation used for the studiesinthis book was state ofthe artat the time, though weare learning a lot more about the experiment during the commissioning period. The detector is in operation, and working spectacularly well
- …