954 research outputs found
The Dynamics of a Strongly Driven Two Component Bose-Einstein Condensate
We consider a two component Bose-Einstein condensate in two spatially localized modes of a double well potential, with periodic modulation of the tunnel coupling between the two modes. We treat the driven quantum field using a two mode expansion and define the quantum dynamics in terms of the Floquet Operator for the time periodic Hamiltonian of the system. It has been shown that the corresponding semiclassical mean-field dynamics can exhibit regions of regular and chaotic motion. We show here that the quantum dynamics can exhibit dynamical tunneling between regions of regular motion, centered on fixed points (resonances) of the semiclassical dynamics
Quorum Sensing Controls Adaptive Immunity through the Regulation of Multiple CRISPR-Cas Systems
Bacteria commonly exist in high cell density populations, making them prone to viral predation and horizontal gene transfer (HGT) through transformation and conjugation. To combat these invaders, bacteria possess an arsenal of defenses, such as CRISPR-Cas adaptive immunity. Many bacterial populations coordinate their behavior as cell density increases, using quorum sensing (QS) signaling. In this study, we demonstrate that QS regulation results in increased expression of the type I-E, I-F, and III-A CRISPR-Cas systems in cells in high-density populations. Strains unable to communicate via QS were less effective at defending against invaders targeted by any of the three CRISPR-Cas systems. Additionally, the acquisition of immunity by the type I-E and I-F systems was impaired in the absence of QS signaling. We propose that bacteria can use chemical communication to modulate the balance between community-level defense requirements in high cell density populations and host fitness costs of basal CRISPR-Cas activity.This work was supported by a Rutherford Discovery Fellowship (P.C.F.) from the Royal Society of New Zealand (RSNZ) and the Marsden Fund, RSNZ. A.G.P. was supported by a University of Otago Doctoral Scholarship. G.P.C.S. is funded by the Biotechnology and Biological Sciences Research Council, UK
The dynamics of a strongly driven two component Bose-Einstein Condensate
We consider a two component Bose-Einstein condensate in two spatially
localized modes of a double well potential, with periodic modulation of the
tunnel coupling between the two modes. We treat the driven quantum field using
a two mode expansion and define the quantum dynamics in terms of the Floquet
Operator for the time periodic Hamiltonian of the system. It has been shown
that the corresponding semiclassical mean-field dynamics can exhibit regions of
regular and chaotic motion. We show here that the quantum dynamics can exhibit
dynamical tunneling between regions of regular motion, centered on fixed points
(resonances) of the semiclassical dynamics
The association between green space and cause-specific mortality in urban New Zealand: an ecological analysis of green space utility
<b>Background:</b>
There is mounting international evidence that exposure to green environments is associated with health benefits, including lower mortality rates. Consequently, it has been suggested that the uneven distribution of such environments may contribute to health inequalities. Possible causative mechanisms behind the green space and health relationship include the provision of physical activity opportunities, facilitation of social contact and the restorative effects of nature. In the New Zealand context we investigated whether there was a socioeconomic gradient in green space exposure and whether green space exposure was associated with cause-specific mortality (cardiovascular disease and lung cancer). We subsequently asked what is the mechanism(s) by which green space availability may influence mortality outcomes, by contrasting health associations for different types of green space.
<b>Methods:</b>
This was an observational study on a population of 1,546,405 living in 1009 small urban areas in New Zealand. A neighbourhood-level classification was developed to distinguish between usable (i.e., visitable) and non-usable green space (i.e., visible but not visitable) in the urban areas. Negative binomial regression models were fitted to examine the association between quartiles of area-level green space availability and risk of mortality from cardiovascular disease (n = 9,484; 1996 - 2005) and from lung cancer (n = 2,603; 1996 - 2005), after control for age, sex, socio-economic deprivation, smoking, air pollution and population density.
<b>Results:</b>
Deprived neighbourhoods were relatively disadvantaged in total green space availability (11% less total green space for a one standard deviation increase in NZDep2001 deprivation score, p < 0.001), but had marginally more usable green space (2% more for a one standard deviation increase in deprivation score, p = 0.002). No significant associations between usable or total green space and mortality were observed after adjustment for confounders.
<b>Conclusion</b>
Contrary to expectations we found no evidence that green space influenced cardiovascular disease mortality in New Zealand, suggesting that green space and health relationships may vary according to national, societal or environmental context. Hence we were unable to infer the mechanism in the relationship. Our inability to adjust for individual-level factors with a significant influence on cardiovascular disease and lung cancer mortality risk (e.g., diet and alcohol consumption) will have limited the ability of the analyses to detect green space effects, if present. Additionally, green space variation may have lesser relevance for health in New Zealand because green space is generally more abundant and there is less social and spatial variation in its availability than found in other contexts
Inside the Loop: The Audio Functionality of Inside
The manner in which soundscapes evolve and change during gameplay can have many implications regarding player experience. INSIDE (Playdead in INSIDE. Released on Microsoft Windows, Playstation 4, Xbox One, Nintendo Switch and iOS, 2016) features a gameplay section in which rhythmic audio cues loop continuously both during gameplay and after player death. This paper uses this aspect of the soundtrack as a case study, examining the effects of looping sound effects and abstract musical cues on player immersion, ludic functionality, and episodic engagement. The concept of spectromorphology proposed by Smalley (Organised Sound 2(2):107–126, 1997) is used to analyse the way in which musical cues can retain ludic functionality and promote immersion in the absence of diegetic sound design. The “musical suture” (Kamp, in: Ludomusicology: approaches to video game music, Equinox, Sheffield, 2016) created by continuously looping audio during death and respawn is also examined with regards to immersing the player within an evolving soundscape
RsmA, RsmC and FlhDC regulate sdhEygfX in Serratia
SdhE is required for the flavinylation and activation of succinate dehydrogenase and fumarate reductase (FRD). In addition, SdhE is conserved in proteobacteria (α, β and γ) and eukaryotes. Although the function of this recently characterized family of proteins has been determined, almost nothing is known about how their genes are regulated. Here, the RsmA (CsrA) and RsmC (HexY) post-transcriptional and post-translational regulators have been identified and shown to repress sdhEygfX expression in Serratia sp. ATCC 39006. Conversely, the flagella master regulator complex, FlhDC, activated sdhEygfX transcription. To investigate the hierarchy of control, we developed a novel approach that utilized endogenous CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) genome-editing by a type I-F system to generate a chromosomal point mutation in flhC. Mutation of flhC alleviated the ability of RsmC to repress sdhEygfX expression, whereas RsmA acted in both an FlhDC-dependent and -independent manner to inhibit sdhEygfX. Mutation of rsmA or rsmC, or overexpression of FlhDC, led to increased prodigiosin, biosurfactant, swimming and swarming. Consistent with the modulation of sdhE by motility regulators, we have demonstrated that SdhE and FRD are required for maximal flagella-dependent swimming. Together, these results demonstrate that regulators of both metabolism and motility (RsmA, RsmC and FlhDC) control the transcription of the sdhEygfX operon.This work was supported by the Marsden Fund, Royal Society of New Zealand (RSNZ) to PCF and a Strategic Grant from the Otago School of Medical Sciences (OSMS) to MB. HGH was supported by a University of Otago Doctoral Scholarship, MBM by a Division of Health Sciences Career Development Post-doctoral Fellowship, BN by a Dean's Prestigious Summer Scholarship from the OSMS and PCF was supported by a Rutherford Discovery Fellowship (RSNZ). NRW and GPCS were supported by Biotechnology and Biological Sciences Research Council (BBSRC), UK awards to the GPCS laboratory. We thank members of the Fineran and Cook laboratories for helpful discussions, Tim Blower for plasmid pTRB32 and for critically reading the manuscript.This is the final version of the article. It first appeared from the Microbiology Society via http://dx.doi.org/10.1099/mic.0.00028
Combinatorial quorum sensing allows bacteria to resolve their social and physical environment
Quorum sensing (QS) is a cell–cell communication system that controls gene expression in many bacterial species, mediated by diffusible signal molecules. Although the intracellular regulatory mechanisms of QS are often well-understood, the functional roles of QS remain controversial. In particular, the use of multiple signals by many bacterial species poses a serious challenge to current functional theories. Here, we address this challenge by showing that bacteria can use multiple QS signals to infer both their social (density) and physical (mass-transfer) environment. Analytical and evolutionary simulation models show that the detection of, and response to, complex social/physical contrasts requires multiple signals with distinct half-lives and combinatorial (nonadditive) responses to signal concentrations. We test these predictions using the opportunistic pathogen Pseudomonas aeruginosa and demonstrate significant differences in signal decay betweeallyn its two primary signal molecules, as well as diverse combinatorial responses to dual-signal inputs. QS is associated with the control of secreted factors, and we show that secretome genes are preferentially controlled by synergistic “AND-gate” responses to multiple signal inputs, ensuring the effective expression of secreted factors in high-density and low mass-transfer environments. Our results support a new functional hypothesis for the use of multiple signals and, more generally, show that bacteria are capable of combinatorial communication
Towards novel Au (III) porphyrins : synthesis and characterization of a range of mesotetraalkylporphyrins.
Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.The principal goal of this work was to synthesize and fully characterize a range of fre
An advanced Bayesian model for the visual tracking of multiple interacting objects
Visual tracking of multiple objects is a key component of many visual-based systems. While there are reliable
algorithms for tracking a single object in constrained scenarios, the object tracking is still a challenge in
uncontrolled situations involving multiple interacting objects that have a complex dynamics. In this article, a novel
Bayesian model for tracking multiple interacting objects in unrestricted situations is proposed. This is accomplished
by means of an advanced object dynamic model that predicts possible interactive behaviors, which in turn depend
on the inference of potential events of object occlusion. The proposed tracking model can also handle false and
missing detections that are typical from visual object detectors operating in uncontrolled scenarios. On the other
hand, a Rao-Blackwellization technique has been used to improve the accuracy of the estimated object trajectories,
which is a fundamental aspect in the tracking of multiple objects due to its high dimensionality. Excellent results
have been obtained using a publicly available database, proving the efficiency of the proposed approach
- …
