199 research outputs found

    Effects of Full-Length Borealin on the Composition and Protein-Protein Interaction Activity of a Binary Chromosomal Passenger Complex

    Get PDF
    The chromosomal passenger complex (CPC) comprises at least four protein components and functions at various cellular localizations during different mitotic stages to ensure correct chromosome segregation and completion of cytokinesis. Borealin, the most recently identified member of the CPC, is an intrinsically unstructured protein of low solubility and stability. Recent reports have demonstrated the formation binary or ternary CPC sub-complexes incorporating short Borealin fragments in vitro. Using isothermal titration calorimetry, we show that full-length Borealin, instead of a Borealin fragment possessing the complete Survivin and INCENP-recognition sequence, is required for the composition of a Borealin-Survivin complex competent to interact with INCENP. In addition, we show evidence that full-length Borealin, which forms high-order oligomers in its isolated form, is a monomer in the Borealin-Survivin CPC sub-complex

    Autoantibodies against the chromosomal passenger protein INCENP found in a patient with Graham Little-Piccardi-Lassueur syndrome

    Get PDF
    BACKGROUND: Graham Little – Piccardi – Lassueur (GLPL) syndrome is a rare dermatosis characterized by scarring alopecia, loss of pubic and axillary hair, and progressive development of variously located follicular papules. We report a first case ever of an autoimmune response in a patient suffering from GLPL syndrome. METHODS: Immunofluorescence and immunoblot analysis were used in a variety of cell cultures including human, monkey, hamster, mouse and bovine cells to analyze the presence of autoantibodies in a GLPL patient. RESULTS: The autoimmune serum showed a pattern of centromere and spindle microtubule staining resembling that of the chromosomal passenger protein complex. By using a complex of proteins expressed in baculovirus, immunoblot analysis demonstrated that the INCENP protein is a major autoantigen in this patient with GLPL syndrome. CONCLUSION: An autoimmune response in GLPL syndrome is reported against the INCENP centromere protein. The occasional development of autoimmunity in GLPL patients could serve as a test in continuing efforts to detect this disease and for a more directed therapy based on the autoantigen response

    Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle

    Get PDF
    The chromosomal passenger complex of Aurora B kinase, INCENP, and Survivin has essential regulatory roles at centromeres and the central spindle in mitosis. Here, we describe Borealin, a novel member of the complex. Approximately half of Aurora B in mitotic cells is complexed with INCENP, Borealin, and Survivin; and Borealin binds Survivin and INCENP in vitro. A second complex contains Aurora B and INCENP, but no Borealin or Survivin. Depletion of Borealin by RNA interference delays mitotic progression and results in kinetochore–spindle misattachments and an increase in bipolar spindles associated with ectopic asters. The extra poles, which apparently form after chromosomes achieve a bipolar orientation, severely disrupt the partitioning of chromosomes in anaphase. Borealin depletion has little effect on histone H3 serine10 phosphorylation. These results implicate the chromosomal passenger holocomplex in the maintenance of spindle integrity and suggest that histone H3 serine10 phosphorylation is performed by an Aurora B–INCENP subcomplex

    Deconstructing Survivin: comprehensive genetic analysis of Survivin function by conditional knockout in a vertebrate cell line

    Get PDF
    Survivin is a key cellular protein thought to function in apoptotic regulation, mitotic progression, or possibly both. In this study, we describe the isolation of two conditional knockouts of the survivin gene in chicken DT40 cells. DT40 cells lacking Survivin die in interphase after failing to complete cytokinesis. However, these cells show normal sensitivity to the chemotherapeutic agent etoposide. Expression of Survivin mutants against a null background to reassess the role of several key residues reveals that DT40 cells can grow normally if their sole Survivin is missing a widely studied cyclin-dependent kinase phosphorylation site or sites reportedly essential for binding to Smac or aurora B. Mutations in the nuclear export sequence or dimerization interface render cells temperature sensitive for growth. As an important caveat for other studies in which protein function is studied by transient transfection, three of the Survivin mutants fail to localize in the presence of the wild-type protein but do localize and indeed support life in its absence

    Use of D140 conditional-knockout cell lines to study chromosomal passenger protein function

    Get PDF
    The chromosomal passenger complex (CPC-INCENP, Aurora B kinase, Survivin and Borealin) is implicated in many mitotic processes. Here we describe how we generated DT40 conditional knockout cell lines for incenp1 and survivin1 to better understand the role of these CPC subunits in the control of Aurora B kinase activity. These lines enabled us to reassess current knowledge of Survivin function and to show that INCENP acts as a rheostat for Aurora B activity

    The Enteropathogenic E. coli (EPEC) Tir Effector Inhibits NF-κB Activity by Targeting TNFα Receptor-Associated Factors

    Get PDF
    Enteropathogenic Escherichia coli (EPEC) disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE) Pathogenicity Island. Our previous work implied that non-LEE-encoded (Nle) effectors possess functions that inhibit epithelial anti-microbial and inflammation-inducing responses by blocking NF-κB transcription factor activity. Indeed, screens by us and others have identified novel inhibitory mechanisms for NleC and NleH, with key co-operative functions for NleB1 and NleE1. Here, we demonstrate that the LEE-encoded Translocated-intimin receptor (Tir) effector has a potent and specific ability to inhibit NF-κB activation. Indeed, biochemical, imaging and immunoprecipitation studies reveal a novel inhibitory mechanism whereby Tir interaction with cytoplasm-located TNFα receptor-associated factor (TRAF) adaptor proteins induces their proteasomal-independent degradation. Infection studies support this Tir-TRAF relationship but reveal that Tir, like NleC and NleH, has a non-essential contribution in EPEC's NF-κB inhibitory capacity linked to Tir's activity being suppressed by undefined EPEC factors. Infections in a disease-relevant intestinal model confirm key NF-κB inhibitory roles for the NleB1/NleE1 effectors, with other studies providing insights on host targets. The work not only reveals a second Intimin-independent property for Tir and a novel EPEC effector-mediated NF-κB inhibitory mechanism but also lends itself to speculations on the evolution of EPEC's capacity to inhibit NF-κB function

    Randomised controlled trial of GM-CSF in critically ill patients with impaired neutrophil phagocytosis

    Get PDF
    Background. Critically ill patients with impaired neutrophil phagocytosis have significantly increased risk of nosocomial infection. Granulocyte-macrophage colony-stimulating factor (GM-CSF) improves phagocytosis by neutrophils ex vivo. This study tested the hypothesis that GM-CSF improves neutrophil phagocytosis in critically ill patients in whom phagocytosis is known to be impaired Methods. This was a multi-centre, phase 2a randomised, placebo-controlled clinical trial Using a personalised medicine approach, only critically ill patients with impaired neutrophil phagocytosis were included. Patients were randomised 1:1 to subcutaneous GM-CSF (3 microgrammws/kg/day) or placebo, once daily for 4 days. The primary outcome measure was neutrophil phagocytosis 2 days after initiation of GM-CSF. Secondary outcomes included neutrophil phagocytosis over time, neutrophil functions other than phagocytosis, monocyte HLA-DR expression, and safety. Results. Thirty-eight patients were recruited from 5 intensive care units (17 randomised to GM-CSF). Mean neutrophil phagocytosis at day 2 was 57.2% (SD 13.2%) in the GM-CSF group and 49.8% (13.4%) in the placebo group, p=0.73. The proportion of patients with neutrophil phagocytosis >50% at day 2, and monocyte HLA-DR, appeared significantly higher in the GM-CSF group. Neutrophil functions other than phagocytosis did not appear significantly different between the groups. The most common adverse event associated with GM-CSF was pyrexia. Conclusions. GM-CSF did not improve mean neutrophil phagocytosis at day 2, but was safe and appeared to increase the proportion of patients with adequate phagocytosis. The study suggests proof of principle for a pharmacological effect on neutrophil function in a subset of critically ill patients.This work was funded by a grant from the Medical Research Council (G1100233), with additional support from the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre. It was sponsored by Newcastle Universit

    The Aurora Kinase in Trypanosoma brucei Plays Distinctive Roles in Metaphase-Anaphase Transition and Cytokinetic Initiation

    Get PDF
    Aurora B kinase is an essential regulator of chromosome segregation with the action well characterized in eukaryotes. It is also implicated in cytokinesis, but the detailed mechanism remains less clear, partly due to the difficulty in separating the latter from the former function in a growing cell. A chemical genetic approach with an inhibitor of the enzyme added to a synchronized cell population at different stages of the cell cycle would probably solve this problem. In the deeply branched parasitic protozoan Trypanosoma brucei, an Aurora B homolog, TbAUK1, was found to control both chromosome segregation and cytokinetic initiation by evidence from RNAi and dominant negative mutation. To clearly separate these two functions, VX-680, an inhibitor of TbAUK1, was added to a synchronized T. brucei procyclic cell population at different cell cycle stages. The unique trans-localization pattern of the chromosomal passenger complex (CPC), consisting of TbAUK1 and two novel proteins TbCPC1 and TbCPC2, was monitored during mitosis and cytokinesis by following the migration of the proteins tagged with enhanced yellow fluorescence protein in live cells with time-lapse video microscopy. Inhibition of TbAUK1 function in S-phase, prophase or metaphase invariably arrests the cells in the metaphase, suggesting an action of TbAUK1 in promoting metaphase-anaphase transition. TbAUK1 inhibition in anaphase does not affect mitotic exit, but prevents trans-localization of the CPC from the spindle midzone to the anterior tip of the new flagellum attachment zone for cytokinetic initiation. The CPC in the midzone is dispersed back to the two segregated nuclei, while cytokinesis is inhibited. In and beyond telophase, TbAUK1 inhibition has no effect on the progression of cytokinesis or the subsequent G1, S and G2 phases until a new metaphase is attained. There are thus two clearly distinct points of TbAUK1 action in T. brucei: the metaphase-anaphase transition and cytokinetic initiation. This is the first time to our knowledge that the dual functions of an Aurora B homolog is dissected and separated into two clearly distinct time frames in a cell cycle
    corecore