847 research outputs found

    1D to 3D Crossover of a Spin-Imbalanced Fermi Gas

    Get PDF
    We have characterized the one-dimensional (1D) to three-dimensional (3D) crossover of a two-component spin-imbalanced Fermi gas of 6-lithium atoms in a 2D optical lattice by varying the lattice tunneling and the interactions. The gas phase separates, and we detect the phase boundaries using in situ imaging of the inhomogeneous density profiles. The locations of the phases are inverted in 1D as compared to 3D, thus providing a clear signature of the crossover. By scaling the tunneling rate with respect to the pair binding energy, we observe a collapse of the data to a universal crossover point at a scaled tunneling value of 0.025(7).Comment: 5 pages, 4 figure

    Metastability in Spin-Polarized Fermi Gases

    Full text link
    We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary. Once formed, the deformed state is highly metastable, persisting for times of up to 2 s.Comment: 4 pages, 6 figure

    Optimizing fire station locations for the Istanbul metropolitan municipality

    Get PDF
    Copyright @ 2013 INFORMSThe Istanbul Metropolitan Municipality (IMM) seeks to determine locations for additional fire stations to build in Istanbul; its objective is to make residences and historic sites reachable by emergency vehicles within five minutes of a fire station’s receipt of a service request. In this paper, we discuss our development of a mathematical model to aid IMM in determining these locations by using data retrieved from its fire incident records. We use a geographic information system to implement the model on Istanbul’s road network, and solve two location models—set-covering and maximal-covering—as what-if scenarios. We discuss 10 scenarios, including the situation that existed when we initiated the project and the scenario that IMM implemented. The scenario implemented increases the city’s fire station coverage from 58.6 percent to 85.9 percent, based on a five-minute response time, with an implementation plan that spans three years

    Phase diagram of a strongly interacting spin-imbalanced Fermi gas

    Get PDF
    We obtain the phase diagram of spin-imbalanced interacting Fermi gases from measurements of density profiles of Li6 atoms in a harmonic trap. These results agree with, and extend, previous experimental measurements. Measurements of the critical polarization at which the balanced superfluid core vanishes generally agree with previous experimental results and with quantum Monte Carlo (QMC) calculations in the Bardeen-Cooper-Schrieffer and unitary regimes. We disagree with the QMC results in the Bose-Einstein condensate regime, however, where the measured critical polarizations are greater than theoretically predicted. We also measure the equation of state in the crossover regime for a gas with equal numbers of the two fermion spin states

    Models of Giant Planet formation with migration and disc evolution

    Full text link
    We present a new model of giant planet formation that extends the core-accretion model of Pollack etal (1996) to include migration, disc evolution and gap formation. We show that taking into account these effects can lead to a much more rapid formation of giant planets, making it compatible with the typical disc lifetimes inferred from observations of young circumstellar discs. This speed up is due to the fact that migration prevents the severe depletion of the feeding zone as observed in in situ calculations. Hence, the growing planet is never isolated and it can reach cross-over mass on a much shorter timescale. To illustrate the range of planets that can form in our model, we describe a set of simulations in which we have varied some of the initial parameters and compare the final masses and semi-major axes with those inferred from observed extra-solar planets.Comment: Accepted in Astronomy & Astrophysic

    Coverage versus supply cost in facility location:physics of frustrated spin systems

    Get PDF
    A comprehensive coverage is crucial for communication, supply, and transportation networks, yet it is limited by the requirement of extensive infrastructure and heavy energy consumption. Here, we draw an analogy between spins in antiferromagnet and outlets in supply networks, and apply techniques from the studies of disordered systems to elucidate the effects of balancing the coverage and supply costs on the network behavior. A readily applicable, coverage optimization algorithm is derived. Simulation results show that magnetized and antiferromagnetic domains emerge and coexist to balance the need for coverage and energy saving. The scaling of parameters with system size agrees with the continuum approximation in two dimensions and the tree approximation in random graphs. Due to frustration caused by the competition between coverage and supply cost, a transition between easy and hard computation regimes is observed. We further suggest a local expansion approach to greatly simplify the message updates which shed light on simplifications in other problems

    Coordination of Mobile Mules via Facility Location Strategies

    Full text link
    In this paper, we study the problem of wireless sensor network (WSN) maintenance using mobile entities called mules. The mules are deployed in the area of the WSN in such a way that would minimize the time it takes them to reach a failed sensor and fix it. The mules must constantly optimize their collective deployment to account for occupied mules. The objective is to define the optimal deployment and task allocation strategy for the mules, so that the sensors' downtime and the mules' traveling distance are minimized. Our solutions are inspired by research in the field of computational geometry and the design of our algorithms is based on state of the art approximation algorithms for the classical problem of facility location. Our empirical results demonstrate how cooperation enhances the team's performance, and indicate that a combination of k-Median based deployment with closest-available task allocation provides the best results in terms of minimizing the sensors' downtime but is inefficient in terms of the mules' travel distance. A k-Centroid based deployment produces good results in both criteria.Comment: 12 pages, 6 figures, conferenc

    Elements of metacommunity structure of diatoms and macroinvertebrates within stream networks differing in environmental heterogeneity

    Get PDF
    Aim Idealized metacommunity structures (i.e. checkerboard, random, quasi-structures, nested, Clementsian, Gleasonian and evenly spaced) have recently gained increasing attention, but their relationships with environmental heterogeneity and how they vary with organism groups remain poorly understood. Here, we tested two main hypotheses: (a) gradient-driven patterns (Clementsian and Gleasonian) occur frequently in heterogeneous environments and (b) small organisms (here, diatoms) are more likely to exhibit gradient-driven patterns than large organisms (here, macroinvertebrates). Location Streams in three regions in China. Taxon Diatoms and macroinvertebrates. Methods The stream diatom and macroinvertebrate data, as well as the environmental data collected from the same set of sites were used to examine the idealized metacommunity structures via the elements of the metacommunity structure (EMS; coherence, turnover and boundary clumping) analysis in three regions. We extended the traditional EMS approach by ordering sites along known environmental gradients. Results We found that Clementsian structure with high degrees of coherence and turnover, and significantly positive clumping was typically observed in the high-heterogeneity regions, whereas randomness was prevalent in the low-heterogeneity region. Macroinvertebrates exhibited clearer Clementsian structures compared with diatoms, while diatoms showed more randomness compared with macroinvertebrates, indicating a stronger role of environmental filtering for macroinvertebrates than diatoms. In most cases, the results of the more novel EMS approach differed from the results of the traditional EMS technique. Main conclusions Our results suggested that the occurrence of different metacommunity structures may be related with the degree of regional environmental heterogeneity. However, diatom metacommunities were more random than those of macroinvertebrate, and such an unexpected result may result from different dispersal abilities between the two organism groups. In addition, we found that the novel EMS approach increased power in discerning metacommunity structure in comparison to the traditional EMS technique.peerReviewe
    corecore