93 research outputs found

    Extensive characterization of a high Reynolds number decelerating boundary layer using advanced optical metrology

    Get PDF
    An experiment conducted in the framework of the EUHIT project and designed to characterize large scale structures in an adverse pressure gradient boundary layer flow is presented. Up to 16 sCMOS cameras were used in order to perform large scale turbulent boundary layer PIV measurements with a large field of view and appropriate spatial resolution. To access the span-wise / wall-normal signature of the structures as well, stereoscopic PIV measurements in span-wise/wall-normal planes were performed at specific stream-wise locations. To complement these large field of view measurements, long-range micro-PIV, time resolved near wall velocity profiles and film-based measurements were performed in order to determine the wall-shear stress and its fluctuations at some specific locations along the model.Comment: 50 page

    Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine?

    Get PDF
    Scots pine (Pinus sylvestris; Pinaceae, Pinales) is known to defend against egg deposition by herbivorous sawflies by changing its terpenoid volatile blend. The oviposition-induced pine odor attracts egg parasitoids that kill the sawfly eggs. Here, we investigated whether sawfly egg deposition activates genes encoding pine terpene synthases by extracting mRNA from oviposition-induced P. sylvestris. Three new sesquiterpene synthases, PsTPS 1, PsTPS 2, and PsTPS 3, were isolated that were shown on heterologous expression in Escherichia coli to produce (E)-β-caryophyllene and α-humulene (PsTPS 1), 1(10),5-germacradiene-4-ol (PsTPS 2), and longifolene and α-longipinene (PsTPS 3) as their principal products. Quantitative RT-PCR analyses revealed that transcript levels of PsTPS 1 and PsTPS 2 were significantly higher in oviposition-induced twigs that were attractive to the parasitoids than in non-attractive, artificially damaged twigs. Thus, our results demonstrate a specific transcription response to egg deposition, distinct from that caused by artificial wounding. Transcripts of PsTPS 3 did not change in response to egg deposition. The transcript levels of PsTPS 1, PsTPS 2, and PsTPS 3 were also determined in relation to time after egg deposition, since pine odor is attractive to the parasitoid only 72 h after egg deposition. Transcription rates of PsTPS 1 and PsTPS 2 were significantly enhanced only 72 h after egg deposition, thus matching the timing of odor attractiveness, while for PsTPS 3, enhanced transcription was not detected at any time period studied after egg deposition. The ecological significance of the oviposition-induced increase of sesquiterpene synthase transcripts is discussed

    Effects of Volatiles from Maruca vitrata Larvae and Caterpillar-Infested Flowers of Their Host Plant Vigna unguiculata on the Foraging Behavior of the Parasitoid Apanteles taragamae

    Get PDF
    The parasitoid wasp Apanteles taragamae is a promising candidate for the biological control of the legume pod borer Maruca vitrata, which recently has been introduced into Benin. The effects of volatiles from cowpea and peabush flowers and Maruca vitrata larvae on host selection behavior of the parasitoid Apanteles taragamae were investigated under laboratory conditions by using a Y-tube olfactometer. Naïve and oviposition-experienced female wasps were given a choice between several odor sources that included (1) uninfested, (2) Maruca vitrata-infested, and (3) mechanically damaged cowpea flowers, as well as (4) stem portions of peabush plants carrying leaves and flowers, (5) healthy M. vitrata larvae, and moribund (6), and live (7) virus-infected M. vitrata larvae. Responses of naïve and oviposition-experienced female wasps did not differ for any of the odor source combinations. Wasps were significantly attracted to floral volatiles produced by cowpea flowers that had been infested with M. vitrata larvae and from which the larvae had been removed. Apanteles taragamae females also were attracted to Maruca vitrata-infested flowers after removal of both the larvae and their feces. Female wasps discriminated between volatiles from previously infested flowers and mechanically damaged flowers. Uninfested cowpea flowers attracted only oviposition-experienced wasps that had received a rewarding experience (i.e. the parasitization of two M. vitrata larvae feeding on cowpea flowers) before the olfactometer test. Wasps also were attracted to uninfested leaves and flowers of peabush. Moreover, they were also attracted to healthy and live virus-infected M. vitrata larvae, but not when the latter were moribund. Our data show that, similarly to what has been extensively been reported for foliar volatiles, flowers of plants also emit parasitoid-attracting volatiles in response to being infested with an herbivore

    Real-Time Analysis of Alarm Pheromone Emission by the Pea Aphid (Acyrthosiphon Pisum) Under Predation

    Get PDF
    Upon attack by predators or parasitoids, aphids emit volatile chemical alarm signals that warn other aphids of a potential risk of predation. Release rate of the major constituent of the alarm pheromone in pea aphids (Acyrthosiphon pisum), (E)-ß-farnesene (EBF), was measured for all nymphal and the adult stage as aphids were attacked individually by lacewing (Chrysoperla carnae) larvae. Volatilization of EBF from aphids under attack was quantified continuously for 60 min at 2-min intervals with a rapid gas chromatography technique (zNose™) to monitor headspace emissions. After an initial burst, EBF volatilization declined exponentially, and detectable amounts were still present after 30 min in most cases. Total emission of EBF averaged 16.33 ± 1.54 ng and ranged from 1.18 to 48.85 ng. Emission was higher in nymphs as compared to adults. No differences between pea aphid life stages were detected for their speed of alarm signal emission in response to lacewing larvae attack. This is the first time that alarm pheromone emission from single aphids has been reported

    Emission of Volatile Organic Compounds After Herbivory from Trifolium pratense (L.) Under Laboratory and Field Conditions

    Get PDF
    Plants emit a wide range of volatile organic compounds in response to damage by herbivores, and many of the compounds have been shown to attract the natural enemies of insect herbivores or serve for inter- and intra-plant communication. Most studies have focused on volatile emission in the laboratory while little is known about emission patterns in the field. We studied the emission of volatiles by Trifolium pratense (red clover) under both laboratory and field conditions. The emission of 24 compounds was quantified in the laboratory, of which eight showed increased emission rates after herbivory by Spodoptera littoralis caterpillars, including (E)-β-ocimene, the most abundant compound, (Z)-β-ocimene, linalool, (E)-β-caryophyllene, (E,E)-α-farnesene, 4,8-dimethyl-1,3,7-nonatriene (DMNT), 1-octen-3-ol, and methyl salicylate (MeSA). While most of these compounds have been reported as herbivore-induced volatiles from a wide range of plant taxa, 1-octen-3-ol seems to be a characteristic volatile of legumes. In the field, T. pratense plants with varying herbivore damage growing in established grassland communities emitted only 13 detectable compounds, and the correlation between herbivore damage and volatile release was more variable than in the laboratory. For example, the emission of (E)-β-ocimene, (Z)-β-ocimene, and DMNT actually declined with damage, while decanal exhibited increased emission with increasing herbivory. Elevated light and temperature increased the emission of many compounds, but the differences in light and temperature conditions between the laboratory and the field could not account for the differences in emission profiles. Our results indicate that the release of volatiles from T. pratense plants in the field is likely to be influenced by additional biotic and abiotic factors not measured in this study. The elucidation of these factors may be important in understanding the physiological and ecological functions of volatiles in plants

    The Defensive Role of Volatile Emission and Extrafloral Nectar Secretion for Lima Bean in Nature

    Get PDF
    Lima bean (Phaseolus lunatus) features two indirect anti-herbivore defenses—emission of volatile organic compounds (VOCs) and secretion of extrafloral nectar (EFN)—which are both inducible upon herbivore damage. In a previous field study, Lima bean benefited from the simultaneous induction of the two defenses, yet it remained unclear whether both had contributed to plant protection. Our experimental approach aimed at studying the defensive role of both indirect defenses simultaneously. Tendrils were sprayed with jasmonic acid (JA) to induce both defenses, and performance was compared to that of others that were treated with a synthetic blend of either EFN or VOCs. Confirming earlier results, JA treatment and application of the VOC mixture induced EFN secretion in treated tendrils in quantitatively similar amounts. The composition of the applied synthetic blend of EFN was adjusted to match the concentration of EFN secreted from JA- and VOC-treated tendrils. Repeated application of either enhanced the performance of several fitness-relevant plant parameters such as growth rate and flower production. Tendrils treated with JA showed a similar trend, yet some fitness-related parameters responded less to this treatment. This suggests a minor importance of any putative JA-dependent direct defense traits or higher costs of JA-elicited responses as compared to VOCS and EFN, as otherwise JA-treated tendrils should have outperformed VOC- and EFN-treated tendrils. Moreover, the beneficial effect of applying synthetic EFN alone equaled or exceeded that of VOCs and JA. Ants were by far the dominant group among the arthropods that was attracted to JA-, VOC-, or EFN-treated tendrils. The results suggest that EFN plays a more important role as an indirect defense of lima bean than VOCs or any other JA-responsive trait

    Eavesdropping on Plant Volatiles by a Specialist Moth: Significance of Ratio and Concentration

    Get PDF
    We investigated the role that the ratio and concentration of ubiquitous plant volatiles play in providing host specificity for the diet specialist grape berry moth Paralobesia viteana (Clemens) in the process of locating its primary host plant Vitis sp. In the first flight tunnel experiment, using a previously identified attractive blend with seven common but essential components (“optimized blend”), we found that doubling the amount of six compounds singly [(E)- & (Z)-linalool oxides, nonanal, decanal, β-caryophyllene, or germacrene-D], while keeping the concentration of other compounds constant, significantly reduced female attraction (average 76% full and 59% partial upwind flight reduction) to the synthetic blends. However, doubling (E)-4,8-dimethyl 1,3,7-nonatriene had no effect on female response. In the second experiment, we manipulated the volatile profile more naturally by exposing clonal grapevines to Japanese beetle feeding. In the flight tunnel, foliar damage significantly reduced female landing on grape shoots by 72% and full upwind flight by 24%. The reduction was associated with two changes: (1) more than a two-fold increase in total amount of the seven essential volatile compounds, and (2) changes in their relative ratios. Compared to the optimized blend, synthetic blends mimicking the volatile ratio emitted by damaged grapevines resulted in an average of 87% and 32% reduction in full and partial upwind orientation, respectively, and the level of reduction was similar at both high and low doses. Taken together, these results demonstrate that the specificity of a ubiquitous volatile blend is determined, in part, by the ratio of key volatile compounds for this diet specialist. However, P. viteana was also able to accommodate significant variation in the ratio of some compounds as well as the concentration of the overall mixture. Such plasticity may be critical for phytophagous insects to successfully eavesdrop on variable host plant volatile signals

    Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods

    Full text link
    corecore