221 research outputs found

    Evidence of ion diffusion at room temperature in microcrystals of the Bi2Sr2CaCu2O8+delta superconductor

    Full text link
    We have studied Bi-2212 microcrystals aged at ambient conditions for 40 days. Combined x-ray absorption near edge structure and x-ray fluorescence measurements with micrometer space resolution show both an increase of Cu+^{+} with respect to Cu2+^{2+} and an enrichment in Cu vs Bi and Sr cation content near the sample edges in the b-axis direction. A parallel study on an electrically contacted sample has indirectly detected the O loss, observing both a resistivity increase and an increase in sample thickness near the edges. We conclude that the O out-diffusion along the b-axis is accompanied by Cu cation migration in the same direction.Comment: RevTeX 4, 10 pages, 3 figure

    On the accuracy of the melting curves drawn from modelling a solid as an elastic medium

    Full text link
    An ongoing problem in the study of a classical many-body system is the characterization of its equilibrium behaviour by theory or numerical simulation. For purely repulsive particles, locating the melting line in the pressure-temperature plane can be especially hard if the interparticle potential has a softened core or contains some adjustable parameters. A method is hereby presented that yields reliable melting-curve topologies with negligible computational effort. It is obtained by combining the Lindemann melting criterion with a description of the solid phase as an elastic continuum. A number of examples are given in order to illustrate the scope of the method and possible shortcomings. For a two-body repulsion of Gaussian shape, the outcome of the present approach compares favourably with the more accurate but also more computationally demanding self-consistent harmonic approximation.Comment: 25 pages, 7 figure

    Simulation of adsorbate-induced faceting on curved surfaces

    Full text link
    A simple solid-on-solid model, proposed earlier to describe overlayer-induced faceting of bcc(111) surface, is applied to faceting of spherical surfaces covered by adsorbate monolayer. Monte Carlo simulation results show that morphology of faceted surface depends on annealing temperature. At initial stage surface around the [111] pole consists of 3-sided pyramids and step-like facets, then step-like facets dominate and their number decreases with temperature, finally a single big pyramid is formed. It is shown that there is reversible phase transition at which faceted surface transforms to almost spherical one. It is found that temperature of this phase transition is an increasing function of surface curvature. Simulation results show that measurements of high temperature properties performed directly and after fast cooling to low temperature lead to different results.Comment: 8 pages, 10 figure
    corecore