128 research outputs found

    Shortening the lipid A acyl chains of Bordetella pertussis enables depletion of lipopolysaccharide endotoxic activity

    Get PDF
    Whooping cough, or pertussis, is an acute respiratory infectious disease caused by the Gram-negative bacterium Bordetella pertussis. Whole-cell vaccines, which were introduced in the fifties of the previous century and proved to be effective, showed considerable reactogenicity and were replaced by subunit vaccines around the turn of the century. However, there is a considerable increase in the number of cases in industrialized countries. A possible strategy to improve vaccine-induced protection is the development of new, non-toxic, whole-cell pertussis vaccines. The reactogenicity of whole-cell pertussis vaccines is, to a large extent, derived from the lipid A moiety of the lipopolysaccharides (LPS) of the bacteria. Here, we engineered B. pertussis strains with altered lipid A structures by expressing genes for the acyltransferases LpxA, LpxD, and LpxL from other bacteria resulting in altered acyl-chain length at various positions. Whole cells and extracted LPS from the strains with shorter acyl chains showed reduced or no activation of the human Toll-like receptor 4 in HEK-Blue reporter cells, whilst a longer acyl chain increased activation. Pyrogenicity studies in rabbits confirmed the in vitro assays. These findings pave the way for the development of a new generation of whole-cell pertussis vaccines with acceptable side effects

    Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals

    Get PDF
    AIMS/HYPOTHESIS: We previously showed that type 2 diabetic patients are characterised by compromised intrinsic mitochondrial function. Here, we examined if exercise training could increase intrinsic mitochondrial function in diabetic patients compared with control individuals. METHODS: Fifteen male type 2 diabetic patients and 14 male control individuals matched for age, BMI and [Formula: see text] enrolled in a 12 week exercise intervention programme. Ex vivo mitochondrial function was assessed by high-resolution respirometry in permeabilised muscle fibres from vastus lateralis muscle. Before and after training, insulin-stimulated glucose disposal was examined during a hyperinsulinaemic-euglycaemic clamp. RESULTS: Diabetic patients had intrinsically lower ADP-stimulated state 3 respiration and lower carbonyl cyanide 4-(trifluoro-methoxy)phenylhydrazone (FCCP)-induced maximal oxidative respiration, both on glutamate and on glutamate and succinate, and in the presence of palmitoyl-carnitine (p < 0.05). After training, diabetic patients and control individuals showed increased state 3 respiration on the previously mentioned substrates (p < 0.05); however, an increase in FCCP-induced maximal oxidative respiration was observed only in diabetic patients (p < 0.05). The increase in mitochondrial respiration was accompanied by a 30% increase in mitochondrial content upon training (p < 0.01). After adjustment for mitochondrial density, state 3 and FCCP-induced maximal oxidative respiration were similar between groups after training. Improvements in mitochondrial respiration were paralleled by improvements in insulin-stimulated glucose disposal in diabetic patients, with a tendency for this in control individuals. CONCLUSIONS/INTERPRETATION: We confirmed lower intrinsic mitochondrial function in diabetic patients compared with control individuals. Diabetic patients increased their mitochondrial content to the same extent as control individuals and had similar intrinsic mitochondrial function, which occurred parallel with improved insulin sensitivity

    Meal-derived glucagon responses are related to lower hepatic phosphate concentrations in obesity and type 2 diabetes

    Get PDF
    Aim. - Type 2 diabetes (T2D) alters glucagon, glucagon-like peptide (GLP)-1, glucose-dependent insulinotropic polypeptide (GIP) and hepatic energy metabolism, yet the possible relationships remain unclear.Methods. - In this observational study, lean insulin-sensitive control subjects (BMI: 23.2 +/- 1.5 kg/m(2)), age-matched insulin-resistant obese subjects (BMI: 34.3 +/- 1.7 kg/m(2)) and similarly obese elderly T2D patients (BMI: 32.0 +/- 2.4 kg/m(2)) underwent mixed-meal tolerance tests (MMTTs), and assessment of hepatic gamma ATP, inorganic phosphate (P-i) and lipids using P-31/H-1 magnetic resonance spectroscopy. Meal-induced secretion of glucagon and incretins was calculated from incremental areas under the concentration-time curves (iAUCs). Peripheral and adipose tissue insulin sensitivity were assessed from time courses of circulating glucose, insulin and free fatty acids.Results. - MMTT-derived peripheral insulin sensitivity was lowest in T2D patients (P &lt;0.001), while glucagon concentrations were comparable across all three groups. At 260 min, GLP-1 was lower in T2D patients than in controls, whereas GIP was lowest in obese individuals. Fasting glucagon concentrations correlated positively with fasting (r = 0.60) and postprandial hepatocellular lipid levels (160 min: r= 0.51, 240 min: r = 0.59), and negatively with adipose tissue insulin sensitivity (r = -0.73). Higher meal-induced glucagon release (iAUC(0)(-260) (min)) correlated with lower fasting (r = -0.62) and postprandial P(i )levels (160 min: r = -0.43, 240 min: r = -0.42; all P &lt;0.05). Higher meal-induced release of GIP (iAUC(0-260) (min)) correlated positively with fasting (r = 0.54) and postprandial serum triglyceride concentrations (iAUC(0-260 min, )r = 0.54; all P &lt;0.01).Conclusion. - Correlations between fasting glucagon and hepatic lipids and between meal-induced glucagon and hepatic P-i suggest a role for glucagon in hepatic energy metabolism. (C) 2018 Elsevier Masson SAS. All rights reserved.</p

    Resveratrol as Add-on Therapy in Subjects With Well-Controlled Type 2 Diabetes: A Randomized Controlled Trial

    Get PDF
    Item does not contain fulltextOBJECTIVE: To determine whether resveratrol supplementation can improve insulin sensitivity and promote overall metabolic health on top of standard diabetes care. RESEARCH DESIGN AND METHODS: Seventeen subjects with well-controlled type 2 diabetes (T2D) were treated with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind crossover study for 30 days. The main outcome measure was insulin sensitivity by the hyperinsulinemic-euglycemic clamp technique. RESULTS: Hepatic and peripheral insulin sensitivity were not affected by resveratrol treatment. Intrahepatic lipid content also remained unaffected by resveratrol; however, the change in intrahepatic lipid content correlated negatively with plasma resveratrol levels (R = -0.68, P = 0.03). Intramyocellular lipid content increased in type 2 muscle fibers (P = 0.03), and systolic blood pressure tended to decrease (P = 0.09) upon resveratrol treatment. In addition, resveratrol significantly improved ex vivo mitochondrial function (state 3 and state U respiration upon malate with octanoyl-carnitine, P < 0.005). Intriguingly, a correlation was found between plasma levels of a metabolite of resveratrol (dihydroresveratrol) and the metformin dose used by the patients (R = 0.66, P = 0.005), suggesting an interaction between metformin and resveratrol. It could be speculated that the lack of a resveratrol-induced insulin-sensitizing effect is caused by this interaction. CONCLUSIONS: Resveratrol supplementation does not improve hepatic or peripheral insulin sensitivity. Our results question the generalized value of resveratrol as an add-on therapy in the treatment of T2D and emphasize the need to perform studies in drug-naive patients with T2D or subjects with prediabetes.1 december 201

    Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans.

    Get PDF
    Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD(+)) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD(+) precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 +/- 1.1 years, BMI 33.4 +/- 0.8 kg/m(2)) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 +/- 44 vs. 1,135 +/- 97 mumol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD(+) levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD(+) boosters can also directly affect skeletal muscle mitochondrial function in humans

    Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance

    Get PDF
    Hepatic steatosis is associated with poor cardiometabolic health, with de novo lipogenesis (DNL) contributing to hepatic steatosis and subsequent insulin resistance. Hepatic saturated fatty acids (SFA) may be a marker of DNL and are suggested to be most detrimental in contributing to insulin resistance. Here, we show in a cross-sectional study design (ClinicalTrials.gov ID: NCT03211299) that we are able to distinguish the fractions of hepatic SFA, mono- and polyunsaturated fatty acids in healthy and metabolically compromised volunteers using proton magnetic resonance spectroscopy (H-1-MRS). DNL is positively associated with SFA fraction and is elevated in patients with non-alcoholic fatty liver and type 2 diabetes. Intriguingly, SFA fraction shows a strong, negative correlation with hepatic insulin sensitivity. Our results show that the hepatic lipid composition, as determined by our H-1-MRS methodology, is a measure of DNL and suggest that specifically the SFA fraction may hamper hepatic insulin sensitivity. Hepatic steatosis is associated with poor cardiometabolic health, with de novo lipogenesis (DNL) contributing to hepatic steatosis and subsequent insulin resistance. Here, the authors use H-1-MRS methodology to show hepatic SFA fraction is a measure of DNL and specifically may hamper hepatic insulin sensitivity.Peer reviewe

    A mathematical model of the human metabolic system and metabolic flexibility

    Get PDF
    In healthy subjects some tissues in the human body display metabolic flexibility, by this we mean the ability for the tissue to switch its fuel source between predominantly carbohydrates in the post prandial state and predominantly fats in the fasted state. Many of the pathways involved with human metabolism are controlled by insulin, and insulin- resistant states such as obesity and type-2 diabetes are characterised by a loss or impairment of metabolic flexibility. In this paper we derive a system of 12 first-order coupled differential equations that describe the transport between and storage in different tissues of the human body. We find steady state solutions to these equations and use these results to nondimensionalise the model. We then solve the model numerically to simulate a healthy balanced meal and a high fat meal and we discuss and compare these results. Our numerical results show good agreement with experimental data where we have data available to us and the results show behaviour that agrees with intuition where we currently have no data with which to compare

    Regulation of skeletal muscle oxidative capacity and insulin signaling by the Mitochondrial Rhomboid Protease PARL

    Get PDF
    Type 2 diabetes mellitus (T2DM) and aging are characterized by insulin resistance and impaired mitochondrial energetics. In lower organisms, remodeling by the protease pcp1 (PARL ortholog) maintains the function and lifecycle of mitochondria. We examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. PARL mRNA and mitochondrial mass were both reduced in elderly subjects and in subjects with T2DM. Muscle knockdown of PARL in mice resulted in malformed mitochondrial cristae, lower mitochondrial content, decreased PGC1&alpha; protein levels, and impaired insulin signaling. Suppression of PARL protein in healthy myotubes lowered mitochondrial mass and insulin-stimulated glycogen synthesis and increased reactive oxygen species production. We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM.<br /

    Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009

    Get PDF
    Insulin resistance is a hallmark of type 2 diabetes mellitus and is associated with a metabolic and cardiovascular cluster of disorders (dyslipidaemia, hypertension, obesity [especially visceral], glucose intolerance, endothelial dysfunction), each of which is an independent risk factor for cardiovascular disease (CVD). Multiple prospective studies have documented an association between insulin resistance and accelerated CVD in patients with type 2 diabetes, as well as in non-diabetic individuals. The molecular causes of insulin resistance, i.e. impaired insulin signalling through the phosphoinositol-3 kinase pathway with intact signalling through the mitogen-activated protein kinase pathway, are responsible for the impairment in insulin-stimulated glucose metabolism and contribute to the accelerated rate of CVD in type 2 diabetes patients. The current epidemic of diabetes is being driven by the obesity epidemic, which represents a state of tissue fat overload. Accumulation of toxic lipid metabolites (fatty acyl CoA, diacylglycerol, ceramide) in muscle, liver, adipocytes, beta cells and arterial tissues contributes to insulin resistance, beta cell dysfunction and accelerated atherosclerosis, respectively, in type 2 diabetes. Treatment with thiazolidinediones mobilises fat out of tissues, leading to enhanced insulin sensitivity, improved beta cell function and decreased atherogenesis. Insulin resistance and lipotoxicity represent the missing links (beyond the classical cardiovascular risk factors) that help explain the accelerated rate of CVD in type 2 diabetic patients
    • …
    corecore