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Abstract: Whooping cough, or pertussis, is an acute respiratory infectious disease caused by the
Gram-negative bacterium Bordetella pertussis. Whole-cell vaccines, which were introduced in the fifties
of the previous century and proved to be effective, showed considerable reactogenicity and were
replaced by subunit vaccines around the turn of the century. However, there is a considerable increase
in the number of cases in industrialized countries. A possible strategy to improve vaccine-induced
protection is the development of new, non-toxic, whole-cell pertussis vaccines. The reactogenicity
of whole-cell pertussis vaccines is, to a large extent, derived from the lipid A moiety of the
lipopolysaccharides (LPS) of the bacteria. Here, we engineered B. pertussis strains with altered lipid A
structures by expressing genes for the acyltransferases LpxA, LpxD, and LpxL from other bacteria
resulting in altered acyl-chain length at various positions. Whole cells and extracted LPS from the
strains with shorter acyl chains showed reduced or no activation of the human Toll-like receptor
4 in HEK-Blue reporter cells, whilst a longer acyl chain increased activation. Pyrogenicity studies
in rabbits confirmed the in vitro assays. These findings pave the way for the development of a new
generation of whole-cell pertussis vaccines with acceptable side effects.
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1. Introduction

The Gram-negative bacterium Bordetella pertussis is an obligate human pathogen that causes pertussis,
an acute respiratory tract disease also known as whooping cough. Several vaccine formulations have been
developed against pertussis. A whole-cell pertussis vaccine that was introduced in the fifties of the previous
century was effective but generated significant side effects. Therefore, it was replaced by subunit-based
vaccines, which were shown to be safe and effective in inducing protective immunity [1]. However,
particularly the industrialized countries, where these vaccines are in use, have witnessed a resurgence of
pertussis in the past decades [2]. This could be related to the rapid waning of the immunity induced by the
acellular vaccines, which evoke a T-helper (Th) 2 response in contrast to the long-lived Th1/Th17-skewed
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immunity elicited by whole-cell vaccines or by natural infection [3]. Moreover, in contrast to the whole-cell
vaccines, the acellular vaccines do not prevent colonization of the upper respiratory tract and, thus,
transmission from vaccinees to unprotected individuals [4,5]. Vaccine-driven evolution of circulating
B. pertussis strains may also contribute to the resurgence of pertussis incidence [6,7]. Thus, there is a strong
medical need for a new, safe, and effective vaccine formula. A strategy to reach this goal could be the
introduction of new whole-cell vaccines with reduced toxicity. As toxicity is mainly determined by the
lipid A moiety of lipopolysaccharides (LPS) [8], this approach requires lipid A engineering.

LPS is a major component of the outer membrane of Gram-negative bacteria. It consists of a lipid
A moiety, a core oligosaccharide, and a long polysaccharide known as the O-antigen, which is lacking
in some species including B. pertussis [9–11]. The lipid A moiety is recognized by the mammalian LPS
receptor, the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD-2) complex, resulting
in activation of a signaling cascade that ends in the production of pro-inflammatory cytokines and
chemokines [12]. These mediators activate the immune defenses [13,14], but overstimulation causes a
variety of disorders with often fatal consequences [15]. Thus, LPS can act as an adjuvant but also as a
potent endotoxin.

The prototype lipid A of Escherichia coli consists of a glucosamine disaccharide that is phosphorylated
at positions 1 and 4′ and contains four 3-hydroxylated fatty acyl chains linked via an amide linkage
to positions 2 and 2′ and via an ester bond to positions 3 and 3′ (Figure 1A). Two secondary acyl
chains are attached at the hydroxyl groups of the fatty acids at positions 2′ and 3′ [10]. The biosynthetic
pathway of lipid A requires nine well-conserved enzymes [10]. In the first step, a 3-hydroxyl (3OH)
acyl chain is transferred from acyl carrier protein to the 3 positions of N-acetylglucosamine (GlcNAc)
in the activated sugar UDP-GlcNAc by LpxA [16,17]. The resulting product is then de-acetylated by
LpxC and subsequently acylated with a 3OH acyl chain at position 2 by LpxD. LpxH then removes
a UMP molecule from a portion of the resulting molecules and one modified molecule is linked with
an unmodified one by LpxB. The resulting product is phosphorylated at position 4′ by LpxK to create
the tetra-acylated and bis-phosphorylated lipid IVA. Two 3-deoxy-D-manno-oct-2-ulosonic acid (KDO)
residues are then added to position 6′ by WaaA after which the secondary acyl chains are added by the
LpxL and LpxM acyltransferases.

Variations in the lipid A structure are found in different bacterial species. These variations affect
the activation of the LPS receptor. Particularly, the number and length of the acyl chains as well as the
number and modifications of the phosphate groups determine the strength of activation [10,18–20].
Variation in the acyl-chain length is determined by molecular rulers in the acyltransferases LpxA,
LpxD, LpxL, and LpxM, which vary between these enzymes of different bacterial species [21,22].
Furthermore, after the conserved biosynthesis pathway, modifications can be introduced in the lipid
A during or after its transport to the outer membrane by enzymes located in the inner or outer
membrane. These modifications include acylation, de-acylation, de-phosphorylation, and modification
of the phosphoryl groups, and the presence of the corresponding enzymes differs between bacterial
species [23]. Thus, lipid A engineering is possible by exploiting the variation between different
species [20,24,25].

Lipid A of B. pertussis differs from that of E. coli in that it is penta-acylated (Figure 1A); it misses a
secondary acyl chain linked to the primary acyl chain at the position 3′. Furthermore, the remaining
secondary acyl chain is a C14 instead of a C12 as found in E. coli and, whilst the primary acyl chain at
position 3′ is 3OH-C14 as in E. coli, there is a 3OH-C10 at position 3 (Figure 1A) even though these
acyl chains are added by the same LpxA enzyme. As we recently demonstrated, this asymmetry is
caused by the low substrate selectivity of LpxA in combination with the substrate specificity of LpxH
in B. pertussis [26]. In this study, we investigated the possibility to reduce the toxicity of B. pertussis
LPS by exploiting the different chain-length specificities of the LpxA, LpxD, and LpxL enzymes from
different bacterial species.
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Figure 1. Lipid A structures of Escherichia coli and Bordetella pertussis (A) and those expected after 

replacing the acyltransferases in B. pertussis (B). The altered acyl chains that are introduced after 

replacing the acyltransferases of the wild type by the heterologous enzymes are shown in red. The 

heterologous enzymes expressed are indicated below the structures. Pa, Pseudomonas aeruginosa; Nm, 

Neisseria meningitidis; Pg, Porphyromonas gingivalis. 3OH-C14, 3OH-C12, and 3OH-C10 acyl chains are 

indicated as C14OH, C12OH, and C10OH, respectively. 

Figure 1. Lipid A structures of Escherichia coli and Bordetella pertussis (A) and those expected after
replacing the acyltransferases in B. pertussis (B). The altered acyl chains that are introduced after
replacing the acyltransferases of the wild type by the heterologous enzymes are shown in red.
The heterologous enzymes expressed are indicated below the structures. Pa, Pseudomonas aeruginosa;
Nm, Neisseria meningitidis; Pg, Porphyromonas gingivalis. 3OH-C14, 3OH-C12, and 3OH-C10 acyl chains
are indicated as C14OH, C12OH, and C10OH, respectively.
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2. Material and Methods

2.1. Plasmids, Strains, and Growth Conditions

Table 1 lists all plasmids and strains used in this study. B. pertussis strains B213 [27] and B1917 [28] were
cultured on Bordet-Gengou agar (Difco, Le Pont de Claix, France) supplemented with 15% defibrinated
sheep blood (Biotrading, Mijdrecht, The Netherlands) for 48 h at 35 ◦C. To grow the bacteria in liquid
cultures, bacteria were collected from solid medium and diluted in Verweij medium [29] to an optical
density at 590 nm (OD590) of 0.05 and incubated in 125-mL square bottles with constant shaking at
175 rpm. For some assays, the bacteria were inactivated by incubation for 1 h at 60 ◦C, resuspended in
phosphate-buffered saline (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM KH2PO4, pH 7.4)
(PBS) and adjusted to an OD590 of 0.5. E. coli strains were grown in lysogeny broth (LB) or LB agar at
37 ◦C.

For all strains, media were supplemented with kanamycin (100 µg ml−1), gentamicin (10 µg mL−1),
ampicillin (100 µg mL−1), nalidixic acid (50 µg mL−1), or streptomycin (300 µg mL−1) when required
for selection or plasmid maintenance, and with 0.1 or 1 mM isopropyl-β-D-1-thiogalactopyranoside
(IPTG) to induce gene expression in E. coli or B. pertussis, respectively.

2.2. Genetic Manipulations

PCRs were performed using High Fidelity Polymerase (Roche Diagnostics GmbH, Mannheim,
Germany). PCR mixes consisted of 1 µL of genomic DNA as a template, 200 µM dNTPs (ThermoFisher
Scientific, Vilnius, Lithuania), 0.25 µM of different primer combinations, 0.5 U DNA polymerase,
and PCR buffer. All primers used are listed in Table S1. The mixtures were incubated for 10 min at
95 ◦C for DNA denaturation, followed by 30 cycles of 1 min at 95 ◦C, 0.5 min at 58 ◦C and elongation
at 72 ◦C for 1 min per kb of expected amplicon size. The reactions were terminated with an extended
elongation step for 10 min at 72 ◦C. The resulting products were separated on 1% agarose gels by
electrophoresis and visualized using ethidium bromide.

Genes encoding LPS-biosynthesis enzymes of different bacteria were amplified by PCR and cloned
into broad host-range expression vector pMMB67EH [30] by exchanging them for the pagL gene in
pMMB67EH-PagLPa [8] (Table 1). To this end, the PCR products and plasmid pMMB67EH-PagLPa

were purified using the Clean-Up System and Plasmid Extraction kit (both from Promega, Madison,
USA), respectively. Purified plasmid and PCR products were digested for 2 h at 37 ◦C with NdeI and
HindIII (ThermoFisher Scientific) for which recognition sites are included in the PCR primers (Table S1),
and subsequently ligated together overnight at room temperature using T4 DNA ligase (ThermoFisher
Scientific). The resulting products were used to transform E. coli strain DH5α, and clones containing
the target gene inserted in the pMMB67EH backbone were elected by restriction enzyme digestions
and DNA sequencing at Macrogen (Amsterdam, The Netherlands).

The lpxL2 gene is located in an operon of three genes in between the lpxL1 and dapF genes.
To inactivate lpxL2 by allele exchange, we made use of the suicide vector pKAS32 [31] (Table 1). Initially,
plasmid pKA32-EFGH-lpxL2::gm was used (Table 1). This plasmid contains a 750-bp sequence of
the 3′ end of the lpxL1 gene and a 753-bp sequence immediately downstream of lpxL2 separated by
a gentamicin-resistance cassette. Attempts to knock out the lpxL2 gene with this construct failed.
We considered the possibility that the rigorous deletion of the lpxL2 gene might affect the expression of
the downstream-located dapF gene. Therefore, constructs with a more subtle deletion, affecting only
the first two codons of lpxL2, were generated. The downstream sequence in pKA32-EFGH-lpxL2::gm
was replaced by a PCR product obtained with primers listed in Table S1 and encompassing the
lpxL2 gene but without the first six nucleotides and, in addition, 866 bp downstream of lpxL2. Then,
a gentamicin-resistance cassette, also obtained by PCR, was re-introduced in the resulting plasmid,
and plasmids pKOlpxL2::gm (a) and pKOlpxL2::gm (b), which contain the resistance cassette in two
different orientations, were selected (Table 1).
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Table 1. Plasmids and strains used in this study.

Plasmids/Strains Characteristics a References

Plasmids
pMMB67EH Broad host-range vector, Ptac, lacIq, AmpR [30]

pKAS32 Allele-exchange suicide vector, AmpR [31]
pMMB67EH-PagLPa pMMB67EH harboring pagL from P. aeruginosa PAO1 [8]
pMMB67EH-LpxAPa pMMB67EH harboring lpxA from P. aeruginosa PAO1 This study
pMMB67EH-LpxLNm pMMB67EH harboring lpxL1 from N. meningitidis H44/76 This study
pMMB67EH-LpxLPg pMMB67EH harboring lpxL from P. gingivalis ATCC33277 This study
pMMB67EH-LpxDPa pMMB67EH harboring lpxD from P. aeruginosa PAO1 This study

pKA32-EFGH-lpxL2::gm pKAS32 derivative harboring DNA segments of lpxL1 and downstream of lpxL2 separated by a gm cassette, AmpR, GmR Geurtsen J

pKOlpxL2::gm (a) pKA32-EFGH-lpxL2::gm derivative harboring a DNA segment upstream of lpxL1 and the entire lpxL2 gene except for the first 6
nucleotides together with a partial dap gene with, in between a gm cassette in the same orientation as the operon, AmpR, GmR This study

pKOlpxL2::gm (b) Like pKOlpxL2::gm (a) but with the gm cassette in the opposite orientation, AmpR, GmR This study
pRTP113368K2a pKAS32 derivative harboring DNA segments of lpxL2, AmpR, KanR (kan in similar orientation as the operon) Hamstra HJ
pRTP113368K1a pRTP113368K2a derivative harboring kan in opposite orientation as the operon. Hamstra HJ

pRT669 lpxA knockout construct, AmpR, KanR (kan in opposite orientation as the lpxA gene) Hamstra HJ
pSS1129 Suicide vector for allelic exchange, GmR, AmpR [32]

pClpxAPa pSS1129 derivative for replacement of lpxA gene of B. pertussis by lpxA gene of P. aeruginosa This study
pClpxDPa Construct for replacement of lpxD gene of B. pertussis by lpxA gene of P. aeruginosa This study

Strains
Escherichia coli

DH5α F−, ∆(lacZYA-argF)U169 thi-1 hsdR17 gyrA96 recA 1 endA 1 supE44 relA1 phoA Φ80 dlacZ∆M15 UU lab collection
SM10λpir thi thr leu fhuA lacY supE recA::RP4–2-Tc::Mu λpir R6K KanR [33]
BL21(DE3) Contains gene for T7 DNA polymerase Invitrogen

BL21-pLpxAPa BL21(DE3) carrying pMMB67EH-LpxAPa This study
BL21-pLpxLNm BL21(DE3) carrying pMMB67EH-LpxLNm This study
BL21-pLpxLPg BL21(DE3) carrying pMMB67EH-LpxLPg This study
BL21-pLpxDPa BL21(DE3) carrying pMMB67EH-LpxDPa This study

Bordetella pertussis
B213 StrR derivative of strain Tohama I, NalR [27]

B213-pLpxAPa B213 carrying pMMB67EH-LpxAPa This study
B213 ∆lpxA-pLpxAPa B213 with inactivated lpxA gene carrying pMMB67EH-LpxAPa This study

B213-pLpxLNm B213 carrying pMMB67EH-LpxLNm This study
B213-pLpxLPg B213 carrying pMMB67EH-LpxLPg This study
B213-pLpxDPa B213 carrying pMMB67EH-LpxDPa This study

B1917 [28]
B1917 lpxAPa B1917 with lpxA gene replaced by lpxA from P. aeruginosa This study
B1917 lpxDPa B1917 with lpxD gene replaced by lpxD from P. aeruginosa This study

a Ptac, tac promoter; AmpR, ampicillin-resistant; GmR, gentamicin resistant, KanR, kanamycin-resistant; NalR, Nalidixic acid-resistant; StrR, streptomycin-resistant.
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Plasmid pRT669 was used to knock out the B. pertussis lpxA gene. P. aeruginosa lpxA and lpxD
genes were used to replace the B. pertussis counterparts by homologous recombination as follows.
Synthetic DNA fragments constituting the fabZ-lpxA-lpxB region (1599 nucleotides) and the skp-lpxD-fabZ
region (1881 nucleotides) were designed, such that the lpxA and lpxD open reading frames were replaced
by the P. aeruginosa sequence while the flanking regions were derived for B. pertussis. The synthetic DNAs
were obtained from Genscript and cloned into the HindIII site of the suicide shuttle vector pSS1129 [32].
The resulting plasmids were called pClpxAPa and pClpxDPa.

E. coli DH5α was transformed with ligation products or plasmids following standard protocols.
Correct clones were elected by PCR, and plasmids were purified and sequenced at the Macrogen sequencing
service (Amsterdam). Then, plasmids were transferred to E. coli strain SM10λpir [33] by transformation
and subsequently to B. pertussis strain B213 by conjugation using ampicillin and nalidixic acid for selection
and counterselection, respectively. To generate chromosomal mutations, various knockout plasmids
(Table 1), which contain an rpsL gene conferring streptomycin sensitivity [31], were integrated into the
chromosome via a single crossover by selecting for kanamycin- or gentamicin-resistant transconjugants;
the resulting bacteria had lost streptomycin resistance. Subsequently, to select for plasmid loss by a second
crossover, bacteria were grown in liquid medium and mutants were selected on plates with streptomycin
and kanamycin or gentamicin. The presence of the plasmids in B. pertussis transconjugants and the proper
generation of knockout mutants were verified by PCR.

2.3. RNA Extraction and Reverse Transcriptase (RT)-PCR

To obtain RNA, cells from exponentially growing cultures were collected by centrifugation
for 10 min at 5000 rpm in an Eppendorf Centrifuge 5424 (Eppendorf, Nijmegen, The Netherlands),
adjusted to an OD550 of 4, and resuspended in trizol (Invitrogen, Carlsbad, USA). Then, 200 µL of
chloroform were added per ml of trizol, followed by centrifugation at 5000 rpm for 30 min. The resulting
upper layer was mixed with an equal volume of ice-cold 75% ethanol. Next, RNA was isolated using
the Nucleospin RNA II kit (Macherey-Nagel GmbH, Düren, Germany) according to the manufacturer’s
instructions. The resulting solution was treated with Turbo DNA free (Ambion, Berlin, Germany) for
1 h at 37 ◦C to remove genomic DNA followed by DNase inactivation according to recommendations
of the manufacturer to generate pure RNA. This was used immediately to generate cDNA using
the Transcriptor High Fidelity cDNA Synthesis Kit (Roche, Amsterdam, The Netherlands). RNA,
cDNA and genomic DNA were used as templates in PCRs with primers listed in Table S1 to determine
the generation of specific transcripts following previously described protocols [34].

2.4. Electrophoresis and Western Blotting

Whole-cell lysates from bacteria adjusted to an OD600 of 5.0 were mixed 1:1 with double-strength
sample buffer, and heated for 10 min at 100 ◦C. For the detection of LPS, whole-cell lysates were
boiled in sample buffer as above and then treated with proteinase K for 1 h at 37 ◦C. Proteins
and LPS were separated by SDS-PAGE on gels containing 13% and 16% acrylamide, respectively,
after which they were stained with Coomassie brilliant blue G250 or silver, respectively. For Western
blotting, proteins separated on gels were transferred to nitrocellulose membranes as described [35]
and anti-6xHis tag antibodies (Invitrogen) were used for protein detection.

2.5. LPS Purification and Analysis

For LPS isolation, bacteria were grown to the exponential phase, i.e., for 12 h for wild type
and chromosomal mutant derivatives and for 24 h for strains B213 ∆lpxA-pLpxAPa, B213-pLpxDPa,
and B213-pLpxLNm. LPS were extracted with hot phenol-water [36] and purified further by solid-phase
extraction on C8 reversed-phase cartridges as described [26]. Negative-ion ESI Fourier transform
(FT) mass spectrometry (MS) of purified LPS was performed on an LTQ Orbitrap XL instrument
(ThermoFisher Scientific) following the described methods [26]. LPS samples were dissolved in a
mixture of 2-propanol, water, and triethylamine (50:50:0.001, v/v/v) (pH 8.5) and infused into the mass



Vaccines 2020, 8, 594 7 of 20

spectrometer by nano-electrospray ionization (ESI)-mass spectrometry (MS) using gold-coated pulled
glass capillaries. The spray voltage was set to from −1.3 to −1.85 kV and the temperature of the
heated capillary to 250 ◦C. Then, nano-ESI-FT-MS was performed with in-source collision-induced
dissociation [26]. This fragmentation technique produced intense fragment ions corresponding to intact
lipid A domain, which originated from the rupture of the labile linkage between the nonreducing lipid
A glucosamine and 3-deoxy-D-manno-oct-2-ulosonic acid. Lipid A compositions proposed are based
on the chemical structure of the LPS from B. pertussis reported previously [37]. Mass-to-charge ratios
given refer to mono-isotopic molecular masses.

2.6. Eukaryotic Cell Lines and TLR4 Signalling

Human NF-κB/SEAP reporter HEK293-Blue cells stably transfected with human TLR4 (hTLR4),
mouse TLR4 (mTLR4) in combination with the corresponding MD-2 and CD14 or human TLR2 (hTLR2)
were purchased from InvivoGen. These cell lines contain an NF-κB-inducible secreted embryonic
alkaline phosphatase (SEAP) reporter gene. The cells were grown in DMEM supplemented with
10% (v/v) heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin, 100 µg mL−1 streptomycin,
300 ng mL−1 L-glutamine, 100 µg mL−1 normocin, and 1×HEK Blue selection at 37 ◦C in a 5% saturated
CO2 atmosphere. For TLR4 signaling, HEK-Blue cells (2.5 × 104) were incubated with serial dilutions
of purified LPS or heat-inactivated bacterial cell preparations adjusted to an OD590 of 0.1 in a 96-well
plate as before [26]. As a positive control, ultrapure LPS from E. coli K-12 (InvivoGen, Toulouse, France)
was used. After 16–24 h incubation at 37 ◦C, supernatants were collected and incubated for 2 h with
the SEAP substrate Quanti-Blue (InvivoGen), and the OD630 was measured using an absorbance
microplate reader.

2.7. Animal Experiments

The animal experiments of this study were performed at Triskelion B.V., Zeist, The Netherlands.
The welfare of the animals was maintained in accordance with the general principles governing the use
of animals in experiments of the European Community and Dutch legislation. This included licensing
of the project by the Central Committee on Animal Experimentation (project license 2016602) and
approval of the study by the Triskelion Animal Welfare Body (AWB number TRIS-333). Five male New
Zealand rabbits per group were housed and manipulated according to standard operating procedures
of Triskelion facilities. The body temperature of each animal was recorded three times a day for five
days before the first injection, just before the administration, and about 0.5, 1, 2, 4, 6, 24, and 48 h after
the injection. The body temperature was measured using an external scanner from subcutaneously
implanted transponders (Plexx, IPTT-300 transponder, Elst, The Netherlands). The rabbits were
inoculated intramuscularly with a saline solution or 10 µg of pure LPS in saline solution. All rabbits
were considered in the final data set.

2.8. Statistical Analysis

Body temperature data before and after the treatment were statistically analyzed with one-way
analysis of variance (ANOVA) and Dunnett tests. For pre-treatment analysis, a generalized ANOVA
test with automatic data transformation was used. This test is an automatic decision tree consisting
of: (i) data pre-processing test, (ii) a group test assessing whether or not group test means were all
equal, and (iii) post-hoc analysis. If the group test showed significant (p < 0.05) non-homogeneity of
group means, pairwise comparisons with the control group were conducted by Dunnett’s multiple
comparison test (parametric after ANOVA, non-parametric after Kruskal–Wallis; significance levels 0.01
and 0.05). The post-treatment analyses were performed as the pre-treatment with some modifications.
For the pre-processing test, the suitability of the covariate was checked (criteria: sufficient cases, at least
2; variability of covariate non-zero; covariate effects sufficiently parallel over the groups; significance
level parallelism test 0.01). Next, normality of data distribution (Shapiro–Wilks test; significance level
0.05) and homogeneity of variances (Levene test; significance level 0.05) were checked. If the group
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test showed significant (p < 0.05) non-homogeneity of group means, pairwise comparisons with the
control group were conducted by Dunnett’s multiple comparison test (parametric after ANOVA,
non-parametric after Kruskal–Wallis; significance levels 0.01 and 0.05). Besides, areas under the curve
between particular intervals were calculated for each rabbit considering the mean of all rabbits of
each group as the baseline. Then, the mean and standard deviation of the area under the curve was
calculated for each group and utilized for comparisons between two groups using an unpaired t-test.
Statistical analysis and comparisons were calculated using the GraphPad software version 6.01.

3. Results

3.1. Production of Heterologous Lpx Enzymes in B. pertussis

To modify the length of the primary acyl chains at positions 2, 2′, and 3, and of the only
secondary acyl chain in B. pertussis lipid A, we made use of LpxD, LpxA, and LpxL acyltransferases
from other bacteria. B. pertussis lipid A contains 3OH-C10 and 3OH-C14 chains at positions 3 and
3′, respectively (Figure 1A). Substitution of LpxA by the corresponding enzyme from Pseudomonas
aeruginosa (LpxAPa) would be expected to result in 3OH-C10 chains at both positions. Substitution of
LpxD of B. pertussis by that of P. aeruginosa (LpxDPa) was expected to lead to the substitution of the
3OH-C14 chains at positions 2 and 2′ by 3OH-C12 chains. Finally, the substitution of LpxL by the
corresponding enzymes from Porphyromonas gingivalis (LpxLPg) or Neisseria meningitidis (LpxLNm)
would be expected to result in the replacement of the secondary C14 chain by C16 or C12 chains,
respectively. The expected structures are illustrated in Figure 1B.

The genes for the heterologous enzymes were cloned into the broad host-range expression vector
pMMB67EH under the control of the tac promoter. Gene expression was first evaluated in the cloning
host E. coli BL21(DE3) by RT-PCR. These assays confirmed the presence of transcripts of the genes of
interest when the bacteria were grown with IPTG, whilst these transcripts were much less abundant or
undetectable when the bacteria were grown in the absence of IPTG (Figure S1A and results not shown).
Synthesis of the proteins was also detected by SDS-PAGE; LpxAPa was produced in higher amounts
than the LpxLNm and LpxLPg proteins (Figure S1B). LpxDPa protein was not detected on a stained
SDS-PAGE gel. To facilitate its detection, a 6xHis-tag was engineered at the C terminus of the protein.
Western blotting assays showed a band of the expected size after expressing lpxDPa in E. coli BL21(DE3)
by the addition of IPTG (Figure S1C). The plasmids were then transferred to B. pertussis strain B213.
The synthesis of LpxLNm and LpxDPa in B213 impaired growth, whilst the strains producing LpxAPa

or LpxLPg grew like the wild type (Figure S1D).

3.2. Analysis of Recombinant Lipid A Structures

The lipid A structures were analyzed by nano-ESI-MS analysis using purified LPS extracted from
exponentially growing bacteria in the presence of IPTG. For the wild-type strain, a major peak was
observed at m/z 1557.97, which corresponds with the expected bis-phosphorylated penta-acylated lipid
A (Figure 2A). In the strain expressing LpxAPa, the spectrum revealed, besides the ion at m/z 1557.97,
two additional prominent ions at m/z 1501.91 and 1529.94 (Figure 2B). The ion at m/z 1501.91 corresponds
with the expected substitution of the primary 3OH-C14 acyl chain at position 3′ by 3OH-C10, whilst the
m/z 1529.94 ion indicates its substitution by a hydroxylated fatty acid with an intermediary C12 chain
length. The relative abundance of the two new species was only 75 and 48%, respectively, relative to
the wild-type structure at m/z 1557.97, which could be due to the expression of the endogenous lpxA on
the chromosome. Therefore, we decided to knock out the chromosomal lpxA copy. This inactivation
caused a growth defect (Figure S1D), perhaps due to a polar effect on the expression of the downstream
located lpxB gene. MS analysis of the lipid A of the resulting strain showed the complete loss of the
m/z 1557.97 ion and a drastic decrease in the abundance of the m/z 1529.94 ion leaving a major peak of
m/z 1501.91 corresponding to the expected substitution (Figure 2C).
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Figure 2. Structural analysis of lipid A by ESI-MS. Negative-ion lipid A mass spectra were
obtained by in-source collision-induced dissociation nano-ESI-MS of intact LPS isolated from cells of
(A) B213, (B) B213 expressing lpxAPa (B213-pLpxAPa), (C) ∆lpxA mutant of B213 expressing lpxAPa

(B213 ∆lpxA-pLpxAPa), (D) B213 expressing lpxLNm (B213-pLpxLNm), (E) B213 expressing lpxLPg

(B213-pLpxLPg), (F) B213 expressing lpxDPa (B213-pLpxDPa), (G) B1917 with the chromosomal lpxA
replaced by lpxAPa (B1917 lpxAPa), and (H) B1917 with the chromosomal lpxD replaced by lpxDPa (B1917
lpxDPa). A major singly-deprotonated ion at m/z 1557.97 was interpreted as the typical B. pertussis lipid
A structure: a diglucosamine (2 GlcN), penta-acylated (three 3OH-C14, one 3OH-C10, and one C14)
with two phosphates residues (2 P) as illustrated in Figure 1A. Additional singly-deprotonated lipid A
ions were detected in different derivatives and their interpretations are also indicated. Only the m/z
range covering lipid A ions is shown.
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MS analysis of lipid A from B213-pLpxLNm showed a drastic reduction of the wild-type
m/z 1557.97 ion, whilst the major peak at m/z 1529.94 corresponds with the expected substitution of
the secondary C14 acyl chain by C12 (Figure 2D). Attempts to delete the chromosomal lpxL failed.
B. pertussis contains two adjacent lpxL homologs on the chromosome, but only one of them, called lpxL2,
is active under laboratory growth conditions [38]. Different constructs were used to delete the lpxL2
gene partially or completely; however, despite considerable efforts, we could not obtain the desired
knockout. This is not due to a polar effect of lpxL2 disruption on the expression of the downstream
gene, dapF, which encodes an essential enzyme involved in the synthesis of meso-diaminopimelate
(DAP), a precursor of the cell wall, and lysine, since also attempts to inactivate the lpxL2 gene in the
presence of meso-DAP were unsuccessful. Thus, whilst the partial substitution of wild-type LPS in B213
expressing lpxLNm already causes a considerable growth defect (Figure S1D), the complete substitution
of this LPS by the altered form is possibly lethal.

MS analysis of lipid A from B213-pLpxLPg also revealed a drastic reduction in the abundance of
the m/z 1557.98 ion and a new peak was detected in this case at m/z 1586.01, which corresponds with
the expected substitution of the C14 by a C16 chain (Figure 2E). Peculiarly, although the vast majority
of lipid A was substituted in this strain without causing any appreciable growth defect (Figure S1D),
inactivation of the chromosomal lpxL2 gene appeared also not possible in this strain.

Analysis of the lipid A structure from B213-pLpxDPa revealed, besides the ion at m/z 1557.97
corresponding with the wild-type structure, two abundant ions at m/z 1529.94 and m/z 1501.91 (Figure 2F)
corresponding with the reduction of the length of one or two acyl chains, respectively, from 3OH-C14
to 3OH-C12. These results show that indeed the production of LpxDPa modified the structure of lipid A
as predicted, although not completely. In summary, the heterologous production of LpxAPa, LpxLNm,
LpxLPg, and LpxDPa in B. pertussis resulted in the expected LPS alterations.

3.3. Differential Activation of TLR4 by the LPS Variants

We next investigated whether the altered structures of the LPS affect TLR4 signaling. To this
end, purified LPS preparations were added to HEK293-Blue cells expressing hTLR4. After exposure,
the activation of the receptor was evaluated by measuring the expression of a reporter gene encoding
SEAP. Interestingly, LPS from B213-pLpxAPa stimulated hTLR4 much less than did LPS from the
wild-type strain (Figure 3A). The residual activation observed was due to the expression of the
chromosomal lpxA gene, as it was eliminated after the inactivation of this gene (Figure 3A). Thus,
the length of the primary acyl chain at position 3′ is relevant for the activation of hTLR4 by B. pertussis
LPS. Furthermore, we tested whether modification of the acyl chains at positions 2 and 2′ would have
a similar outcome. HEK-Blue cells expressing hTLR4 showed no induction of SEAP activity after
incubation with purified LPS from B213-pLpxDPa (Figure 3A). Thus, also reduction of the length of
the acyl chains at positions 2 and 2′ of B. pertussis lipid A has a drastic impact on the activation of
hTLR4. Finally, LPS from B213-pLpxLNm and B213-pLpxLPg reduced and increased hTLR4 activation,
respectively (Figure 3A). Hence, stimulation of hTLR4 also correlates with the length of the secondary
acyl chain in the order C16 > C14 > C12.

For comparison, we also measured the activity of some of the LPS preparations in stimulating the
mTLR4. Stimulation of HEK293-Blue cells expressing mTLR4 with LPS preparations from wild-type
strain B213 resulted in a stronger response than observed in the cells expressing hTLR4 (compare panels
A and B in Figure 3). LPS preparations from B213 cells expressing the heterologous enzymes, including
those expressing LpxLPg resulting in a secondary C16 chain, appeared slightly less effective in
stimulating these cells (Figure 3B). Thus, activation of the human and mouse TLR4 is differently
affected by the LPS modifications. However, when the chromosomal lpxA gene was inactivated in
B213 expressing LpxAPa, the resulting LPS was severely affected in its capacity to activate mTLR4
(Figure 3B). Apparently, the length of the primary acyl chain at position 3′ is critical in stimulating
both hTLR4 and mTLR4.
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Figure 3. Stimulation of HEK293-Blue cells expressing hTLR4 (A,C) or mTLR4 (B,D) with purified
LPS (A,B) or whole-cell preparations of B213 and derivatives (C,D). LPS preparations and bacterial
suspensions were serially diluted. After incubation for 2 h with HEK293-Blue cells expressing mTLR4
or for 4 h with HEK293-Blue cells expressing hTLR4, alkaline phosphatase activity was determined.
Graphs show the mean and standard deviation from a representative experiment of three repeats
in duplicate.

Previously, we reported that the decreased toxicity of B. pertussis LPS that had lost the primary acyl
chain at the 3 position due to the expression of a pagL gene encoding a lipid A de-acylase was nullified
in whole-cell preparations by its increased release from the membranes [8]. As our goal is to generate a
new cellular vaccine, we wished to determine also the biological activity of whole-cell preparations
from cells producing the LPS variants with altered acyl-chain length. Synthesis of heterologous
LPS biosynthetic enzymes in strain B213 affected the stimulation of HEK293-Blue cells expressing
hTLR4 similarly in whole-cell and purified LPS preparations (compare panels A and C in Figure 3).
Stimulation of HEK293-Blue cells expressing mTLR4 by whole-cell preparations was barely affected by
the expression of the heterologous enzymes in B213 (Figure 3D). However, whole-cell preparations of
the ∆lpxA mutant of B213 producing LpxAPa failed also to activate these cells (Figure 3D).

3.4. Construction of Stable LPS Mutants in a Vaccine Strain

To generate stable strains with lipid A modifications, the lpxA and lpxD genes of B. pertussis were
replaced on the chromosome by the corresponding genes from P. aeruginosa. The replacement of both
genes was performed in strain B1917, a worldwide predominant strain associated with the resurgence
of pertussis since the 1990s [28]. MS spectra of lipid A of B1917 indicated a similar structure as that
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of B213. The correct replacement of both genes was confirmed in PCR assays. The mutant strains
showed growth defects similar to those of strain B213 ∆lpxA-pLpxAPa and B213-LpxDPa (data not
shown). In both cases, the gene substitution resulted in the synthesis of lipid A species with the
expected shortened acyl chains as evidenced by MS (Figure 2G,H). Both mutants were grown for up
to 10 passages in a liquid medium, and subsequent MS analysis revealed no alteration of the lipid A
structure (data not shown), thus evidencing the stable production of modified lipid A. Interestingly,
the growth rate of the B1917 lpxAPa mutant was restored to wild-type levels after the consecutive
passages, and the resulting strain is, thus, more suitable for vaccine production. In contrast, the growth
defect of mutant B1917 lpxDPa persisted after successive passages. The bioactivity of LPS preparations
from the mutants was determined in HEK293-Blue cells expressing mTLR4 or hTLR4. In accordance
with the results obtained with the B213 derivatives (Figure 3A,B), LPS preparations from B1917
lpxAPa did barely activate hTLR4 or mTLR4, whilst LPS from B1917 lpxDPa showed drastically lower
activity than wild-type LPS (Figure S2). As a control, we also stimulated the reporter cell lines with
hexa-acylated E. coli LPS and found that, as expected, it is a more potent hTLR4 agonist than the
penta-acylated B. pertussis LPS, whilst mTLR4 was stimulated similarly by both LPS preparations
(Figure S3).

3.5. LPS-induced Pyrogenicity Response in Rabbits

We next wanted to determine the endotoxicity of the mutant LPS species in vivo. The purified LPS
used in the pyrogenicity experiment was first checked for activation of HEK293-Blue cells expressing
hTLR2, which confirmed the absence of contaminating lipoproteins (data not shown). We opted for the
rabbit pyrogenicity test, one of the methods accepted in most pharmacopeias to control for the presence
of pyrogens. Most of the amino-acid differences in TLR4 among species are located in a hypervariable
region located between residues 285 and 366, which is involved in ligand recognition. The amino-acid
similarly shared with hTLR4 in this region is greater in rabbit TLR4 (57%) than in mTLR4 (48%) [39]. Thus,
a rabbit model could be more relevant to predict pyrogenicity humans than a mouse model. Four groups
of five New Zealand White rabbits were used in this experiment. The body temperature of each animal
was monitored three times a day for 5 days before treatment. Animals showed a body temperature
between 37.0–38.6 ◦C. No statistically significant differences were found between groups. Animals were
then injected intramuscularly with physiological saline solution (control group) or purified LPS from
wild-type B1917, B1917 lpxDPa or B1917 lpxAPa. The body temperature was monitored before injection
(time 0) and regularly during 6 h post-injection, and again at 24 and 48 h post-injection. The control
group did not show significant alterations in the body temperature during the first 6 h and thereafter
(Figure 4A). However, the body temperature of the group injected with wild-type LPS was increased
2 and 4 h post-injection (Figure 4A), and at 4 h post-injection, the difference was statistically significant
compared to the control group (Figure 4B). At 6 h post-injection and thereafter, the body temperature had
decreased again to similar levels as in the control group (Figure 4A). In the groups that received the mutant
LPS species, no significant differences were found at any time compared to the control group, although the
LPS of mutant B1917 lpxDPa slightly increased the temperature at 4 h post-injection compared to control
(Figure 4A,B). A comparison of the areas under the curve between 0 h and 6 h confirmed statistically
significant differences in response between the lpxA mutant LPS and the wild-type LPS (Figure 4C).
In conclusion, in contrast to the wild-type LPS, both mutant LPS forms elicited no signs or minimal signs
of pyrogenicity in rabbits, which is in agreement with the in vitro TLR4 stimulation assays.
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Figure 4. Pyrogenicity assays in rabbits. Groups of five animals were injected with saline solution
(control) or with 10 µg of B. pertussis B1917 wild-type LPS, or mutant LPS derivatives resulting from
the expression of lpxAPa or lpxDPa. The temperature of each animal was monitored at different time
intervals after injection. (A) Mean body temperature and standard deviation for each group before
injection (0 h) and at different times post-injection are shown (1, 2, 4, 6, 24, 48 h). (B) The differences
in body temperatures within groups at 4 h post-injection. Statistically significant differences were
determined using ANOVA and Dunnett tests and are indicated with two asterisks (p < 0.001). ns,
not significant. (C) The mean of area under the curve and standard deviation of all animals of a group
were calculated between 0 and 6 h using as baseline the mean of each group. Statistically significant
differences between the two groups are indicated with one asterisk (p < 0.05) using an unpaired t-test.
Ns, not significant.

4. Discussion

The reactogenicity of whole-cell pertussis vaccines has led to their replacement by subunit vaccines.
However, these subunit vaccines suffer from several shortcomings, i.e., (i) although they elicit protective
immunity, they do not prevent the colonization of the entire respiratory tract and transmission to
unprotected individuals, (ii) the immunity elicited is rapidly waning, and (iii) because they consist
of a limited number of antigens, vaccine-induced escape mutants might be selected. The whole-cell
vaccines did not have these limitations but they were reactogenic. The development of less reactogenic
whole-cell vaccines could offer a solution. LPS is, to a considerable extent, responsible for the toxicity
of the cellular pertussis vaccines [8]. Previously, it has been demonstrated that the length of the acyl
chains affects the toxicity of lipid A of N. meningitidis [19] and of synthetic lipid A analogs [40]. In the
case of N. meningitidis lipid A, both increasing and reducing the length of the acyl chains at the 3 and 3′
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positions resulted in reduced TLR4-stimulating activity [19]. Stöver et al. systematically altered the
length of the secondary acyl chains in synthetic hexa-acylated lipid A analogs with three secondary acyl
chains and reported that molecules with three secondary C10 chains had optimal activity, whereas both
longer and shorter secondary chains reduced or eliminated the activity [40]. In the present study,
we investigated whether modification of acyl-chain length in B. pertussis lipid A could also reduce
LPS endotoxicity. We found that shortening of the length of all four acyl chains tested diminished the
capacity of the LPS to activate hTLR4. Accordingly, an engineered increase in the length of one of the
acyl chains enhanced the capacity to stimulate hTLR4. Thus, the length of acyl chains is relevant for
the activity of B. pertussis LPS and, therefore, its manipulation can be a useful tool in the development
of a new generation of cellular pertussis vaccines with impaired endotoxicity.

For the acyl chain at position 3′, our data can explain previous results by others. LPS of B. pertussis
strain 18–323 and of two clinical isolates were reported to be far less effective in activating hTLR4
than that of reference strain Tohama I [41,42]. Lipid A of these strains deviates in two aspects from
that of strain Tohama I, i.e., (i) it contains 3OH-C10 and 3OH-C12 acyl chains instead of 3OH-C14 at
position 3′ due to an amino-acid substitution in the LpxA protein, and (ii) it lacks a non-stoichiometric
modification of the phosphates with glucosamine that is observed in Tohama I depending on the
culture conditions [41,42]. Both aspects were reported to contribute to the reduced capacity of this
LPS to stimulate HEK-Blue cells expressing hTLR4 [43]. Here, we demonstrated that an acyl-chain
alteration at the 3′ position influences the lipid A activity. Shortening of the acyl chains at the other
positions also drastically reduced hTRL4 responses even in the presence of considerable amounts of
wild-type LPS (Figure 2), suggesting that these novel LPS variants work as TLR4 antagonists.

Why could subtle variations in acyl-chain length exert such a dramatic effect on the ability of
B. pertussis lipid A to activate TLR4? Canonical TLR4 agonists, such as the hexa-acylated E. coli lipid A,
are captured by the hydrophobic binding pocket of MD-2 in a specific orientation with the proximal
GlcN ring facing the dimerization interface (agonist pose). Five acyl chains are accommodated in
the binding pocket of MD-2, whereas the sixth chain, the 2N-acyl chain, lies outside the pocket
and drives TLR4 complex dimerization (Figure S4A,B) [44,45]. In contrast, under-acylated lipid A
variants, such as tetra-acylated lipid IVa or a synthetic analog of anti-endotoxic R. sphaeroides lipid
A, Eritoran, are bound in an opposite orientation (rotation by 180◦, antagonist pose) with four or
five lipid chains, respectively, fully inserted in the binding pocket of MD-2 (Figure S4C,D) [46,47].
Since neither acyl chain is exposed on the surface of MD-2, these lipid A variants cannot stimulate
receptor complex dimerization and cannot initiate pro-inflammatory signaling [48]. It has been shown
that the exposure of the 2N-acyl chain on the surface of MD-2 is facilitated by spatial rearrangement
of the diglucosamine backbone of lipid A-induced by protein binding (Figure S4) and depends on
the orientation of the MD-2-bound lipid A [49,50]. Presentation of the 2N-acyl chain on the surface of
the protein is only possible if lipid A is bound in an “agonist orientation”—the one found for E. coli
lipid A in the co-crystal structures with PDB code 3FXI and 3VQ1. The external location of the 2N-acyl
chain is further stabilized by the LPS-induced rearrangement of the Phe126 loop of MD-2. Phe126 is
exposed to solvent in the ligand-free state and with bound antagonist lipid A (Figure S4C,D) which
prevents receptor homodimerization [51], whereas it is directed inward upon binding of an agonist
ligand [52,53]. The latter arrangement advocates receptor complex dimerization and the induction of
signaling (Figure S4B) [54].

The acylation pattern of penta-acyl B. pertussis lipid A is notorious for its reduced ability to activate
TLR4 complex [20,55,56]. However, it is also known that negatively charged inner-core sugars present
in Ra-LPS enhance the affinity for TLR4/MD-2 and contribute to establishing the dimerization interface
with the second TLR4* complex by ionic interactions [57,58]. MD-2 discriminates both the acylation
pattern and the length of acyl chains in lipid A (as well as their total hydrophobic volume), binding in
two different orientations (+/−180◦) of B. pertussis lipid A in the binding pocket of MD-2 is possible.
Binding in the orientation with the proximal GlcN ring facing the dimerization interface would result
in the TLR4 activation, whereas an opposite pose would provide antagonistic activity.
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If penta-acyl B213 Ra-LPS binds via its lipid A region to the hTLR4/MD-2 complex in the agonist
orientation, only four acyl chains can be inserted into the binding pocket of hMD-2 as compared to
five chains in E. coli lipid A (Figure 5A,B). The hydrophobic volume provided by one C10 and three
C14 chains is smaller compared to that of E. coli lipid A so that the lipid chains are loosely packed in
the binding pocket which results in a lower affinity and less efficient binding as compared to E. coli
Ra-LPS. Still, the exposure of the 2N-acyl chain on the surface of MD-2 and the correct positioning of
the phosphate group at position 1 delivers sufficient hydrophobic and ionic attraction, respectively,
for the interaction with the second TLR4 * complex resulting in receptor complex dimerization and
induction of pro-inflammatory signaling. The increased length of the secondary C16 chain at position
2′ in the LPS of strain B213-pLpxLPg contributes to a more accurate fitting of acyl chains in the binding
pocket of MD-2 in the agonist orientation (Figure 5C) which enhances affinity and results in higher
TLR4-stimulating activity. A decreased length of acyl chains, such as in the mutants expressing
lpxAPa or lpxDPa, reduces the total hydrophobic volume of lipid chains, thereby diminishing the
binding affinity to MD-2 in the agonist orientation. Such mutant LPS variants would likely bind in an
opposite orientation (rotation of the glucosamine backbone of lipid A by 180◦) with all acyl chains
accommodated within the binding cavity of MD-2. Binding in the antagonist orientation (Figure 5D,E)
prevents exposure of one acyl chain on the surface of MD-2 and thus impedes the dimerization and
inhibits the pro-inflammatory signaling.

Interestingly, most modifications barely affected mTLR4 activation unless when the residual
synthesis of wild-type LPS was prevented by inactivation of the chromosomal gene copies, as illustrated
for lpxA and lpxD. Thus, whilst some novel LPS species appear to be antagonistic for hTLR4 activation,
this does not seem to be the case for mTLR4 activation. Previous studies reported species-dependent
differences regarding TLR4 activation [59]. Examples are lipid IVa [54,60] and the penta-acylated
meningococcal LpxL1-variant LPS [61], which can act as antagonists for hTLR4, but as agonists for
mTLR4. Species specificity is caused in part by the dissimilarities in the structure of h- and mMD-2.
The binding pocket of mMD-2 is narrower and deeper than that of hMD-2, which is predictive for
higher affinity binding of underacylated lipid A variants [54]. Besides, mMD-2 possesses less positively
charged residues at the rim of the binding groove, which means that ionic interactions of lipid A
phosphates are less important for binding to mMD-2. These features explain the higher activating
potency of both wild types on mTLR4 compared to hTLR4. Importantly, these differences limit the
extrapolation of data from experimental animals to humans in vaccine trials [61]. However, the novel
LPS species resulting from the production of LpxAPa failed to activate both mTLR4 and hTLR4 in vitro
and did not cause toxicity in rabbits as revealed in pyrogenicity assays. The growth properties and the
apparent stability of expression of modified lipid A make these strains suitable for the production of
whole-cell vaccines but also other LPS-containing vaccines, such as those based on outer membrane
vesicles [62]. Further vaccine improvement is possible by combining the lipid A modifications with
other mutations affecting, for example, expression of specific antigens or improving vesicle formation,
and work along these lines is being pursued by us. Apart from the relevance of these results for vaccine
development, they demonstrate that alteration of the 3′ acyl chain is a key feature for the activation of
the LPS receptor of different mammalian species. A similar reduction of TLR activation in different
species makes the LpxAPa mutant particularly applicable in vaccine development, as the results from
animal experiments will be more predictive for the human situation.
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Figure 5. The proposed mode of interaction of LPS with hTLR4/MD-2. The proposed binding modes of
LPS of E. coli K-12 (PDB code: 3FXI) (A), B. pertussis B213/B1917 (B), and several mutant LPS derivatives
generated in this study (C–E) are shown. The binding poses (orientation and affinity) with MD-2 are
displayed below the figures.

5. Conclusions

Our approaches to reduce the endotoxicity of whole-cell B. pertussis vaccines by lipid A engineering
were effective and resulted in at least two promising pertussis LPS mutants. After their modification at
the chromosomal level, the strains expressed one single lipid A species and they appeared to be stable.
A slight modification of the length of any of the fatty acyl chains of B. pertussis LPS drastically affects
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TLR4 signaling. To the best of our knowledge, alteration of lipid A acyl-chain length by manipulation of
LpxD and LpxL with consequences for TLR4 signaling has not been reported before. Thus, we believe
that our findings open new avenues to the generation of new cellular vaccines for B. pertussis and
probably also for other Gram-negative bacterial pathogens. In addition, this approach can be used to
modify and fine-tune the endotoxic activity of other LPS-containing vaccines such as those based on
outer membrane vesicles.

6. Patents

Part of this work is included in a European patent application (reference number 17160604.9),
filed by Intravacc, with JA, EP, PvdL, and JT as inventors.
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