758 research outputs found

    A 380 GHz SIS receiver using Nb/AlO(x)/Nb junctions for a radioastronomical balloon-borne experiment: PRONAOS

    Get PDF
    The superheterodyne detection technique used for the spectrometer instrument of the PRONAOS project will provide a very high spectral resolution (delta nu/nu = 10(exp -6)). The most critical components are those located at the front-end of the receiver: their contribution dominates the total noise of the receiver. Therefore, it is important to perform accurate studies for specific components, such as mixers and multipliers working in the submillimeter wave range. Difficulties in generating enough local oscillator (LO) power at high frequencies make SIS mixers very desirable for operation above 300 GHz. The low LO power requirements and the low noise temperature of these mixers are the primary reason for building an SIS receiver. This paper reports the successful fabrication of small (less than or equal to 1 sq micron) Nb/Al-O(x)/Nb junctions and arrays with excellent I-V characteristics and very good reliability, resulting in a low noise receiver performance measured in the 368/380 GHz frequency range

    Doping-induced metal-insulator transition in aluminum-doped 4H silicon carbide

    Get PDF
    International audienceWe report an experimental determination of the doping-induced metal-insulator transition in aluminum-doped 4H silicon carbide. Low temperature transport measurements down to 360 mK and temperature dependent Raman experiments down to 5 K, together with secondary ion mass spectroscopy profiling, suggest a critical aluminum concentration lying between 6.4 and 8.7 1020 cm−3 for the metal-insulator transition in these epilayers grown by the vapor-liquid-solid technique. Preliminary indications of a superconducting transition in the metallic sample are presented

    Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths

    Get PDF
    High-quality Resonant Tunneling Diodes have been fabricated and tested as sources for millimeter and submillimeter wavelengths. The devices have shown excellent I-V characteristics with peak-to-valley current ratios as high as 6:1 and current densities in the range of 50-150 kA/cm(exp 2) at 300 K. Used as local oscillators, the diodes are capable of state of the art output power delivered by AlGaAs-based tunneling devices. As harmonic multipliers, a frequency of 320 GHz has been achieved by quintupling the fundamental oscillation of a klystron source

    Reaction Networks For Interstellar Chemical Modelling: Improvements and Challenges

    Full text link
    We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes -- ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination -- is reviewed. Emphasis is placed on those reactions that have been identified, by sensitivity analyses, as 'crucial' in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalysed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase.Comment: Accepted for publication in Space Science Review

    Absorbing boundary conditions for the Westervelt equation

    Full text link
    The focus of this work is on the construction of a family of nonlinear absorbing boundary conditions for the Westervelt equation in one and two space dimensions. The principal ingredient used in the design of such conditions is pseudo-differential calculus. This approach enables to develop high order boundary conditions in a consistent way which are typically more accurate than their low order analogs. Under the hypothesis of small initial data, we establish local well-posedness for the Westervelt equation with the absorbing boundary conditions. The performed numerical experiments illustrate the efficiency of the proposed boundary conditions for different regimes of wave propagation

    Potential barrier heights at metal on oxygen-terminated diamond interfaces

    No full text
    International audienceElectrical properties of metal-semiconductor (M/SC) and metal/oxide/SC structures built with Zr or ZrO_2 deposited on oxygen-terminated surfaces of (001)-oriented diamond films, comprising a stack of lightly p-doped diamond on a heavily doped layer itself homoepitaxially grown on a Ib substrate, are investigated experimentally and compared to different models. In Schottky barrier diodes, the interfacial oxide layer evidenced by high resolution transmission electron microscopy and electron energy losses spectroscopy before and after annealing, and barrier height inhomogeneities accounts for the measured electrical characteristics until flat bands are reached, in accordance with a model which generalizes that of R.T. Tung [Phys. Rev. B 45, 13509 (1992)] and permits to extract physically meaningful parameters of the three kinds of interface: (a) unannealed ones; (b) annealed at 350°C; (c) annealed at 450°C, with characteristic barrier heights of 2.2-2.5 V in case (a) while as low as 0.96 V in case (c). Possible models of potential barriers for several metals deposited on well defined oxygen-terminated diamond surfaces are discussed and compared to experimental data. It is concluded that interface dipoles of several kinds present at these compound interfaces and their chemical evolution due to annealing are the suitable ingredients able to account for the Mott-Schottky behavior when the effect of the metal work function is ignored, and to justify the reverted slope observed regarding metal work function, in contrast to the trend always reported for all other metal-semiconductor interfaces.Les propriétés électriques et structurales d'interfaces métal/diamant et métal/oxyde/diamant où le métal est le Zirconium et le semi-conducteur comporte un empilement de couches faiblement et fortement dopées au bore sur substrat Ib, sont étudiées expérimentalement et comparées à différents modèles. Dans le barrière de Schottky, une inter-couche d'oxyde d'environ 2 couches atomiques, mise en évidence par diverses techniques de microscopie électronique à transmission, est présente et ajoutée à la présence d'inhomogénéités de barrière de potentiel, est corrélée aux propriétés électriques simulées par un modèle qui généralise celui de R. T. Tung [Phys. Rev. B 45, 13509 (1992)] . Les paramètres physiquement caractéristiques des interfaces (a) non recuites, (b) recuite à 350°C et (c) recuite à 450°C peuvent ainsi être extraits, en particulier des hauteurs de barrière de 2.2-2.5 V dans le cas (a) et aussi basses que 0.96 V dans le cas (c). Les modèles possibles de fixation du niveau de Fermi aux interfaces métal/diamant sont examinés et confrontés aux données récemment publiées pour différents métaux sur la surface oxygénée du diamant. On conclue que les quantités physiques judicieuses sont l'affinité électronique du diamant, fonction de son état de surface, pour justifier l'allure générale conforme au modèle de Mott-Schottky et la force du dipole d'interface, dépendante des liaisons chimiques à l'interface, pour expliquer la pente de la variation de la barrière en fonction du travail de sortie du métal, qui est inversée par rapport à tous les autres semi-conducteurs

    Clustering effect in Simon and Simeck

    Get PDF
    SIMON and SIMECK are two lightweight block ciphers with a simple round function using only word rotations and a bit-wise AND operation. Previous work has shown a strong clustering effect for differential and linear cryptanalysis, due to the existence of many trails with the same inputs and outputs. In this paper, we explore this clustering effect by exhibiting a class of high probability differential and linear trails where the active bits stay in a fixed window of w bits. Instead of enumerating a set of good trails contributing to a differential or a linear approximation, we compute the probability distribution over this space, including all trails in the class. This results in stronger distinguishers than previously proposed, and we describe key recovery attacks against SIMON and SIMECK improving the previous results by u

    Electronic and physico-chemical properties of nanmetric boron delta-doped diamond structures

    Get PDF
    Heavily boron doped diamond epilayers with thicknesses ranging from 40 to less than 2 nm and buried between nominally undoped thicker layers have been grown in two different reactors. Two types of [100]-oriented single crystal diamond substrates were used after being characterized by X-ray white beam topography. The chemical composition and thickness of these so-called deltadoped structures have been studied by secondary ion mass spectrometry, transmission electron microscopy, and spectroscopic ellipsometry. Temperature-dependent Hall effect and four probe resistivity measurements have been performed on mesa-patterned Hall bars. The temperature dependence of the hole sheet carrier density and mobility has been investigated over a broad temperature range (6K<T<450 K). Depending on the sample, metallic or non-metallic behavior was observed. A hopping conduction mechanism with an anomalous hopping exponent was detected in the non-metallic samples. All metallic delta-doped layers exhibited the same mobility value, around 3.660.8 cm2/Vs, independently of the layer thickness and the substrate type. Comparison with previously published data and theoretical calculations showed that scattering by ionized impurities explained only partially this low common value. None of the delta-layers showed any sign of confinement-induced mobility enhancement, even for thicknesses lower than 2 nm.14 page

    X-ray white beam topography of self-organized domains in flux-grown BaTiO3 single crystals

    Get PDF
    The phenomenon of self-organization of domains into a “square-net pattern” in single-crystal, flux-grown BaTiO3 several degrees below the ferroelectric to paraelectric phase transition was investigated using in situ synchrotron x-ray topography. The tetragonal distortion of the crystal was determined by measuring the angular separation between the diffraction images received from 90° a and c domains in the projection topographs, and shows a rapid decrease towards 110 °C, the onset temperature for self-organization. The onset of self-organization is accompanied by bending of the {100} lattice planes parallel to the crystal surface, which produces a strain that persists up to and beyond the Curie temperature, where the crystal becomes cubic and the self-organized domains disappear. At the Curie point, the bending angle α100=8.1(±0.3)mrad is at a maximum and corresponds to the radius of curvature of the surface being 16.3(±0.6) mm
    corecore