1,170 research outputs found

    The application of a numerical integration procedure developed by erwin fehlberg to the restricted problem of three bodies

    Get PDF
    Application of numerical integration procedures to restricted three-body proble

    Composite Polarons in Ferromagnetic Narrow-band Metallic Manganese Oxides

    Full text link
    A new mechanism is proposed to explain the colossal magnetoresistance and related phenomena. Moving electrons accompanied by Jahn-Teller phonon and spin-wave clouds may form composite polarons in ferromagnetic narrow-band manganites. The ground-state and finite-temperature properties of such composite polarons are studied in the present paper. By using a variational method, it is shown that the energy of the system at zero temperature decreases with the formation of composite polaron; the energy spectrum and effective mass of the composite polaron at finite temperature is found to be strongly renormalized by the temperature and the magnetic field. It is suggested that the composite polaron contribute significantly to the transport and the thermodynamic properties in ferromagnetic narrow-band metallic manganese oxides.Comment: Latex, no figur

    Initial water impact of a wedge at vertical and oblique angles

    Full text link
    This paper examines initial asymmetric wedge-impact flows with horizontal as well as vertical impact velocity. The method of two-dimensional vortex distributions is employed to model the initial-boundary-value problem. The numerical analysis involves discretization of the body surface and an iterative solution technique. Experimental drop tests of a prismatic wedge were performed to gain understanding and provide data for comparison of initial water impact when asymmetry and horizontal impact velocity are present. The experimental investigation of initial flow separation off the wedge vertex ( i.e. , keel) during impact is described. Initial separation-ventilation of the flow from the vertex due to asymmetric impact or horizontal-vertical impact velocity is examined in relation to the present theory. Agreement between the data and the numerical predictions was demonstrated for small degrees of asymmetry and small ratios of horizontal to vertical impact velocity. The initial flow detachment from the vertex also revealed interesting hydrodynamic characteristics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42702/1/10665_2004_Article_5147593.pd

    Progressive refinement rendering of implicit surfaces

    Get PDF
    The visualisation of implicit surfaces can be an inefficient task when such surfaces are complex and highly detailed. Visualising a surface by first converting it to a polygon mesh may lead to an excessive polygon count. Visualising a surface by direct ray casting is often a slow procedure. In this paper we present a progressive refinement renderer for implicit surfaces that are Lipschitz continuous. The renderer first displays a low resolution estimate of what the final image is going to be and, as the computation progresses, increases the quality of this estimate at an interactive frame rate. This renderer provides a quick previewing facility that significantly reduces the design cycle of a new and complex implicit surface. The renderer is also capable of completing an image faster than a conventional implicit surface rendering algorithm based on ray casting

    Electronic dielectric constants of insulators by the polarization method

    Full text link
    We discuss a non-perturbative, technically straightforward, easy-to-use, and computationally affordable method, based on polarization theory, for the calculation of the electronic dielectric constant of insulating solids at the first principles level. We apply the method to GaAs, AlAs, InN, SiC, ZnO, GaN, AlN, BeO, LiF, PbTiO3_3, and CaTiO3_3. The predicted \einf's agree well with those given by Density Functional Perturbation Theory (the reference theoretical treatment), and they are generally within less than 10 % of experiment.Comment: RevTeX 4 pages, 2 ps figure

    Amplitude measurements of Faraday waves

    Full text link
    A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quantitative agreement up to supercritical drive amplitudes of 20%. The validity of an existing perturbation analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure

    Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus Fumigatus conidial proteome

    Get PDF
    Background The pathogenic mold Aspergillus fumigatus is the most frequent infectious cause of death in severely immunocompromised individuals such as leukemia and bone marrow transplant patients. Germination of inhaled conidia (asexual spores) in the host is critical for the initiation of infection, but little is known about the underlying mechanisms of this process. Results To gain insights into early germination events and facilitate the identification of potential stage-specific biomarkers and vaccine candidates, we have used quantitative shotgun proteomics to elucidate patterns of protein abundance changes during early fungal development. Four different stages were examined: dormant conidia, isotropically expanding conidia, hyphae in which germ tube emergence has just begun, and pre-septation hyphae. To enrich for glycan-linked cell wall proteins we used an alkaline cell extraction method. Shotgun proteomic resulted in the identification of 375 unique gene products with high confidence, with no evidence for enrichment of cell wall-immobilized and secreted proteins. The most interesting discovery was the identification of 52 proteins enriched in dormant conidia including 28 proteins that have never been detected in the A. fumigatus conidial proteome such as signaling protein Pil1, chaperones BipA and calnexin, and transcription factor HapB. Additionally we found many small, Aspergillus specific proteins of unknown function including 17 hypothetical proteins. Thus, the most abundant protein, Grg1 (AFUA_5G14210), was also one of the smallest proteins detected in this study (M.W. 7,367). Among previously characterized proteins were melanin pigment and pseurotin A biosynthesis enzymes, histones H3 and H4.1, and other proteins involved in conidiation and response to oxidative or hypoxic stress. In contrast, expanding conidia, hyphae with early germ tubes, and pre-septation hyphae samples were enriched for proteins responsible for housekeeping functions, particularly translation, respiratory metabolism, amino acid and carbohydrate biosynthesis, and the tricarboxylic acid cycle. Conclusions The observed temporal expression patterns suggest that the A. fumigatus conidia are dominated by small, lineage-specific proteins. Some of them may play key roles in host-pathogen interactions, signal transduction during conidial germination, or survival in hostile environments
    • …
    corecore