27 research outputs found

    Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise

    Get PDF
    Changes in accumulated snowfall over the Antarctic Ice Sheet have an immediate and time-delayed impact on global mean sea level. The immediate impact is due to the instantaneous change in freshwater storage over the ice sheet, whereas the time-delayed impact acts in opposition through enhanced ice-dynamic flux into the ocean1. Here, we reconstruct 200 years of Antarctic-wide snow accumulation by synthesizing a newly compiled database of ice core records2 using reanalysis-derived spatial coherence patterns. The results reveal that increased snow accumulation mitigated twentieth-century sea-level rise by ~10 mm since 1901, with rates increasing from 1.1 mm decade−1 between 1901 and 2000 to 2.5 mm decade−1 after 1979. Reconstructed accumulation trends are highly variable in both sign and magnitude at the regional scale, and linked to the trend towards a positive Southern Annular Mode since 19573. Because the observed Southern Annular Mode trend is accompanied by a decrease in Antarctic Ice Sheet accumulation, changes in the strength and location of the circumpolar westerlies cannot explain the reconstructed increase, which may instead be related to stratospheric ozone depletion4. However, our results indicate that a warming atmosphere cannot be excluded as a dominant force in the underlying increase

    Формування та розвиток загальної теорії стійкості (середина XVIII ст. — 30-і рр. ХХ ст.)

    Get PDF
    У статті розглянуто історію вивчення стійкості (середина XVIII — початок XX ст., світовий контекст). Досліджено внесок А. Пуанкаре та О.М. Ляпунова в розвиток загальної теорії стійкості. Показано розвиток їх ідей у працях російських та українських учених.В статье рассмотрена история изучения устойчивости (середина XVIII — начало XX в., мировой контекст). Исследован вклад французского ученого А. Пуанкаре и русского ученого А.М. Ляпунова в развитие общей теории устойчивости. Показано дальнейшее развитие их идей в трудах русских и украинских ученых.The history of basic research in stability is given. Contributions from H.Poincaré, a French mathematician, mechanic and physicist, and O. Lapunov, a soviet mathematician and mechanic (working in the Kharkiv university) to development of the general theory of stability are shown. In 1892—1902, O. Lyapunov constructed an original robust mathematical apparatus to study stability of motion. Development of ideas and methods of H.Poincar of H.Poincar³e and O. Lapunov in works of later Ukrainian and Russian scientists is shown

    The Greenland and Antarctic ice sheets under 1.5◦C global warming

    Get PDF
    Even if anthropogenic warming were constrained to less than 2°C above pre-industrial, the Greenland and Antarctic ice sheets will continue to lose mass this century, with rates similar to those observed over the last decade. However, nonlinear responses cannot be excluded, which may lead to larger rates of mass loss. Furthermore, large uncertainties in future projections still remain, pertaining to knowledge gaps in atmospheric (Greenland) and oceanic (Antarctica) forcing. On millennial timescales, both ice sheets have tipping points at or slightly above the 1.5-2.0°C threshold; for Greenland, this may lead to irreversible mass loss due to the surface mass balance elevation feedback, while for Antarctica, this could result in a collapse of major drainage basins due to ice-shelf weakening

    Drifting and blowing snow measurements: comparison between Snow Particle counter and a simple photoelectronic fork sensor (Wenglor)

    No full text
    International audienceHeterogeneity of snow cover in high mountain area may increase avalanche hazard. In Antarctica, drifting snow plays an important role in the surface mass balance and therefore on the sea level rise. It is therefore necessary to evaluate blowing snow in the field in terms of snow fluxes and occurrence, and, if possible, using to automatic measurements. We present here two sensors based on the same measurements techniques, using the optical beam obstruction method: the Snow Particle Counter (SPC) and the Wenglor YH08PCT8 sensor. The SPC has been widely tested and used in the past and is considered the reference in the present study. The Wenglor YH08PCT8 sensor is a relatively simple, inexpensive commercial counter used in industry which recognizes extremely small parts, holes, slots and notches. It has been tested for 4-5 years as a sensor for a eolian sand and snow transport. The present study focused on the performance of the Wenglor sensor in the context of blowing snow measurement. During two consecutive winters from 2011 to 2013, we set up Wenglor sensors and SPCs at Lac Blanc Pass (French Alps 2800 m) and tested Wenglor sensors in cold room. The results presented here will focus on Wenglor sensor's performance and limitations for uses in high mountain area and cold regions

    Arctic Snowfall from CloudSat Observations and Reanalyses

    No full text
    International audienceWhile snowfall makes a major contribution to the hydrological cycle in the Arctic, state-of-the-art climatologies still significantly disagree. We present a satellite-based characterization of snowfall in the Arctic using CloudSat observations, and compare it with various other climatologies. First, we examine the frequency and phase of precipitation as well as the snowfall rates from CloudSat over 2007–10. Frequency of solid precipitation is higher than 70% over the Arctic Ocean and 95% over Greenland, while mixed precipitation occurs mainly over North Atlantic (50%) and liquid precipitation over land south of 70°N (40%). Intense mean snowfall rates are located over Greenland, the Barents Sea, and the Alaska range (>500 mm yr−1), and maxima are located over the southeast coast of Greenland (up to 2000 mm yr−1). Then we compare snowfall rates with the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim, herein ERA-I) and Arctic System Reanalysis (ASR). Similar general geographical patterns are observed in all datasets, such as the high snowfall rates along the North Atlantic storm track. Yet, there are significant mean snowfall rate differences over the Arctic between 58° and 82°N between ERA-I (153 mm yr−1), ASR version 1 (206 mm yr−1), ASR version 2 (174 mm yr−1), and CloudSat (183 mm yr−1). Snowfall rates and differences are larger over Greenland. Phase attribution is likely to be a significant source of snowfall rate differences, especially regarding ERA-I underestimation. In spite of its nadir-viewing limitations, CloudSat is an essential source of information to characterize snowfall in the Arctic

    How much snow falls on the Antarctic ice sheet?

    Get PDF
    Climate models predict Antarctic precipitation to increase during the 21st century, but their present day Antarctic precipitation differs. A model-independent climatology of the Antarctic precipitation characteristics, such as snowfall rates and frequency, is needed to assess the models, but it is not yet available. Satellite observations of precipitation by active sensors has been possible in the polar regions since the launch of CloudSat in 2006. Here, we use two CloudSat products to generate the first multi-year, model-independent climatology of Antarctic precipitation. The first product is used to determine the frequency and the phase of precipitation, while the second product is used to assess the snowfall rate. The mean snowfall rate from August 2006 to April 2011 is 171 mm year−1 over the Antarctic ice sheet, north of 82° S. While uncertainties on individual precipitation retrievals from CloudSat data are potentially large, the mean uncertainty should be much smaller, but cannot be easily estimated. There are no in situ measurements of Antarctic precipitation to directly assess the new climatology. However, distributions of both precipitation occurrences and rates generally agree with the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data set, the production of which is constrained by various in situ and satellite observations, but does not use any data from CloudSat. The new data set thus offers unprecedented capability to quantitatively assess Antarctic precipitation statistics and rates in climate models

    Detection of snowfall occurrence during blowing snow events using photoelectric sensors

    No full text
    International audienceThere is a strong need to identify blowing snow events with and without concurrent falling snow and to estimate solid precipitation amounts in mountainous areas and polar regions. For these purposes, we first developed a method using the concomitant analysis of an anemometer and a drifting snow sensors (SPC-S7 and Wenglor/YH03PCT8-YH08PCT8). Photoelectric sensors, such as the SPC-S7 (Snow Particle Counter), specially designed for studying drifting snow, or a simpler photoelectric counter manufactured by Wenglor, were chosen because they had already been tested in previous studies for measuring solid precipitation. They were set up at Lac Blanc Pass, an experimental site dedicated to the study of drifting snow in the French Alps. The data set obtained was compared with the independent database of blowing snow events with or without falling snow collected at the same experimental site, i.e. data on the precipitation amount stemming from heated precipitation gauge and SAFRAN modeling output The analysis of snow flux and mean diameter according to wind speed allowed us to separate blowing snow events with and without precipitation for moderate wind speed. To reduce the uncertainty at high wind speed, the SPC-S7 must be set up at least 4 m above the snow surface. Similar preliminary results were obtained with the simpler Wenglor photoelectric counter, despite the minimum observable diameter being 200 pm and the particle size distribution unavailable. These results must be confirmed by further experiments. The SPC-S7- estimated precipitation amount is in relatively good agreement with modeled precipitation given the many uncertainties due to the calculation hypotheses. Since the particle size distribution is not available for the simpler photoelectric counter and there are too many uncertainties and hypotheses in calculating solid precipitation, we concluded that the solid precipitation amount cannot be reliably estimated by the simple photoelectric counter

    How much snow falls on the Antarctic ice sheet?

    Get PDF
    International audienceClimate models predict Antarctic precipitation to increase during the 21st century, but their present day Antarctic precipitation differs. A model-independent climatology of the Antarctic precipitation characteristics, such as snowfall rates and frequency, is needed to assess the models, but it is not yet available. Satellite observations of precipitation by active sensors has been possible in the polar regions since the launch of CloudSat in 2006. Here, we use two CloudSat products to generate the first multi-year, model-independent climatology of Antarctic precipitation. The first product is used to determine the frequency and the phase of precipitation, while the second product is used to assess the snowfall rate. The mean snowfall rate from August 2006 to April 2011 is 171 mm year-1 over the Antarctic ice sheet, north of 82° S. While uncertainties on individual precipitation retrievals from CloudSat data are potentially large, the mean uncertainty should be much smaller, but cannot be easily estimated. There are no in situ measurements of Antarctic precipitation to directly assess the new climatology. However, distributions of both precipitation occurrences and rates generally agree with the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data set, the production of which is constrained by various in situ and satellite observations, but does not use any data from CloudSat. The new data set thus offers unprecedented capability to quantitatively assess Antarctic precipitation statistics and rates in climate models
    corecore