55,573 research outputs found

    From Andreev bound states to Majorana fermions in topological wires on superconducting substrates : a story of mutation

    Full text link
    We study the proximity effect in a topological nanowire tunnel coupled to an s-wave superconducting substrate. We use a general Green's function approach that allows us to study the evolution of the Andreev bound states in the wire into Majorana fermions. We show that the strength of the tunnel coupling induces a topological transition in which the Majorana fermionic states can be destroyed when the coupling is very strong. Moreover, we provide a phenomenologial study of the effects of disorder in the superconductor on the formation of Majorana fermions. We note a non-trivial effect of a quasiparticle broadening term which can take the wire from a topological into a non-topological phase in certain ranges of parameters. Our results have also direct consequences for a nanowire coupled to an inhomogenous superconductor

    Determining the spin-orbit coupling via spin-polarized spectroscopy of magnetic impurities

    Full text link
    We study the spin-resolved spectral properties of the impurity states associated to the presence of magnetic impurities in two-dimensional, as well as one-dimensional systems with Rashba spin-orbit coupling. We focus on Shiba bound states in superconducting materials, as well as on impurity states in metallic systems. Using a combination of a numerical T-matrix approximation and a direct analytical calculation of the bound state wave function, we compute the local density of states (LDOS) together with its Fourier transform (FT). We find that the FT of the spin-polarized LDOS, a quantity accessible via spin-polarized STM, allows to accurately extract the strength of the spin-orbit coupling. Also we confirm that the presence of magnetic impurities is strictly necessary for such measurement, and that non-spin-polarized experiments cannot have access to the value of the spin-orbit coupling.Comment: 26 pages, 6 figure

    Solar Spectrum (SOLSPEC) measurement from 180 to 3000 nanometers

    Get PDF
    The SOLSPEC experiment, planned for the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission, is described. The purpose of this experiment is the measurement of the absolute solar irradiances in the wavelength range from 180 to 3000 nm and the variabilities of the solar irradiances in this wavelength range. Measurements of the irradiances and variabilities are used in: (1) solar-terrestrial/planetary relationships, in particular aeronomy of the stratosphere and mesosphere; (2) climatoglogy; and (3) solar physics

    On the use of the Fourier Transform to determine the projected rotational velocity of line-profile variable B stars

    Get PDF
    The Fourier Transform method is a popular tool to derive the rotational velocities of stars from their spectral line profiles. However, its domain of validity does not include line-profile variables with time-dependent profiles. We investigate the performance of the method for such cases, by interpreting the line-profile variations of spotted B stars, and of pulsating B tars, as if their spectral lines were caused by uniform surface rotation along with macroturbulence. We perform time-series analysis and harmonic least-squares fitting of various line diagnostics and of the outcome of several implementations of the Fourier Transform method. We find that the projected rotational velocities derived from the Fourier Transform vary appreciably during the pulsation cycle whenever the pulsational and rotational velocity fields are of similar magnitude. The macroturbulent velocities derived while ignoring the pulsations can vary with tens of km/s during the pulsation cycle. The temporal behaviour of the deduced rotational and macroturbulent velocities are in antiphase with each other. The rotational velocity is in phase with the second moment of the line profiles. The application of the Fourier method to stars with considerable pulsational line broadening may lead to an appreciable spread in the values of the rotation velocity, and, by implication, of the deduced value of the macroturbulence. These two quantities should therefore not be derived from single snapshot spectra if the aim is to use them as a solid diagnostic for the evaluation of stellar evolution models of slow to moderate rotators.Comment: 13 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    Effects of finite superconducting coherence lengths and of phase gradients in topological SN and SNS junctions and rings

    Full text link
    We study the effect of a finite proximity superconducting (SC) coherence length in SN and SNS junctions consisting of a semiconducting topological insulating wire whose ends are connected to either one or two s-wave superconductors. We find that such systems behave exactly as SN and SNS junctions made from a single wire for which some regions are sitting on top of superconductors, the size of the topological SC region being determined by the SC coherence length. We also analyze the effect of a non-perfect transmission at the NS interface on the spatial extension of the Majorana fermions. Moreover, we study the effects of continuous phase gradients in both an open and closed (ring) SNS junction. We find that such phase gradients play an important role in the spatial localization of the Majorana fermions

    Majoranas with and without a 'character': hybridization, braiding and Majorana number

    Get PDF
    In this paper we demonstrate under what conditions a pseudo-spin degree of freedom or character can be ascribed to the Majorana bound states (MBS) which can be created at the end of one dimensional non-interacting systems, corresponding to D, DIII and BDI in the usual classification scheme. We have found that such a character is directly related to the class of the topological superconductor and its description by a Z\mathbb{Z}, rather than a Z2\mathbb{Z}_2, invariant which corresponds to the BDI class. We have also found that the DIII case with mirror symmetry, which supports multiple MBS, is in fact equivalent to the BDI class with an additional time-reversal symmetry. In all cases where a character can be given to the Majorana states we show how to construct the appropriate operator explicitly in various examples. We also examine the consequences of the Majorana character by considering possible hybridization of MBS brought into proximity and find that two MBS with the same character do not hybridize. Finally, we show that having this character or not has no consequence on the braiding properties of MBS.Comment: 10 pages, 1 figur

    The construction of a reliable potential for GeO2 from first-principles

    Get PDF
    The construction of a reliable potential for GeO2, from first-principles, is described. The obtained potential, which includes dipole polarization effects, is able to reproduce all the studied properties (structural, dynamical and vibrational) to a high degree of precision with a single set of parameters. In particular, the infrared spectrum was obtained with the expression proposed for the dielectric function of polarizable ionic solutions by Weis et al. [J.M. Caillol, D. Levesque and J.J. Weis, J. Chem. Phys. 91, 5544 (1989)]. The agreement with the experimental spectrum is very good, with three main bands that are associated to tetrahedral modes of the GeO2 network. Finally, we give a comparison with a simpler pair-additive potential.Comment: 9 pages, 8 figure
    • …
    corecore