455 research outputs found
Precession of a Freely Rotating Rigid Body. Inelastic Relaxation in the Vicinity of Poles
When a solid body is freely rotating at an angular velocity ,
the ellipsoid of constant angular momentum, in the space , has poles corresponding to spinning about the minimal-inertia and
maximal-inertia axes. The first pole may be considered stable if we neglect the
inner dissipation, but becomes unstable if the dissipation is taken into
account. This happens because the bodies dissipate energy when they rotate
about any axis different from principal. In the case of an oblate symmetrical
body, the angular velocity describes a circular cone about the vector of
(conserved) angular momentum. In the course of relaxation, the angle of this
cone decreases, so that both the angular velocity and the maximal-inertia axis
of the body align along the angular momentum. The generic case of an asymmetric
body is far more involved. Even the symmetrical prolate body exhibits a
sophisticated behaviour, because an infinitesimally small deviation of the
body's shape from a rotational symmetry (i.e., a small difference between the
largest and second largest moments of inertia) yields libration: the precession
trajectory is not a circle but an ellipse. In this article we show that often
the most effective internal dissipation takes place at twice the frequency of
the body's precession. Applications to precessing asteroids, cosmic-dust
alignment, and rotating satellites are discussed.Comment: 47 pages, 1 figur
Unusual radar echoes from the Greenland ice sheet
In June 1991, the NASA/Jet Propulsion Laboratory airborne synthetic-aperture radar (AIRSAR) instrument collected the first calibrated data set of multifrequency, polarimetric, radar observations of the Greenland ice sheet. At the time of the AIRSAR overflight, ground teams recorded the snow and firn (old snow) stratigraphy, grain size, density, and temperature at ice camps in three of the four snow zones identified by glaciologists to characterize four different degrees of summer melting of the Greenland ice sheet. The four snow zones are: (1) the dry-snow zone, at high elevation, where melting rarely occurs; (2) the percolation zone, where summer melting generates water that percolates down through the cold, porous, dry snow and then refreezes in place to form massive layers and pipes of solid ice; (3) the soaked-snow zone where melting saturates the snow with liquid water and forms standing lakes; and (4) the ablation zone, at the lowest elevations, where melting is vigorous enough to remove the seasonal snow cover and ablate the glacier ice. There is interest in mapping the spatial extent and temporal variability of these different snow zones repeatedly by using remote sensing techniques. The objectives of the 1991 experiment were to study changes in radar scattering properties across the different melting zones of the Greenland ice sheet, and relate the radar properties of the ice sheet to the snow and firn physical properties via relevant scattering mechanisms. Here, we present an analysis of the unusual radar echoes measured from the percolation zone
Coarse Particles and Heart Rate Variability among Older Adults with Coronary Artery Disease in the Coachella Valley, California
Alterations in cardiac autonomic control, assessed by changes in heart rate variability (HRV), provide one plausible mechanistic explanation for consistent associations between exposure to airborne particulate matter (PM) and increased risks of cardiovascular mortality. Decreased HRV has been linked with exposures to PM(10) (PM with aerodynamic diameter ≤ 10 μm) and with fine particles (PM with aerodynamic diameter ≤ 2.5 μm) originating primarily from combustion sources. However, little is known about the relationship between HRV and coarse particles [PM with aerodynamic diameter 10–2.5 μm (PM(10–2.5))], which typically result from entrainment of dust and soil or from mechanical abrasive processes in industry and transportation. We measured several HRV variables in 19 nonsmoking older adults with coronary artery disease residing in the Coachella Valley, California, a desert resort and retirement area in which ambient PM(10) consists predominantly of PM(10–2.5). Study subjects wore Holter monitors for 24 hr once per week for up to 12 weeks during spring 2000. Pollutant concentrations were assessed at nearby fixed-site monitors. We used mixed models that controlled for individual-specific effects to examine relationships between air pollutants and several HRV metrics. Decrements in several measures of HRV were consistently associated with both PM(10) and PM(10–2.5); however, there was little relationship of HRV variables with PM(2.5) concentrations. The magnitude of the associations (~ 1–4% decrease in HRV per 10-μg/m(3) increase in PM(10) or PM(10–2.5)) was comparable with those observed in several other studies of PM. Elevated levels of ambient PM(10–2.5) may adversely affect HRV in older subjects with coronary artery disease
Determining asteroid spin states using radar speckles
Knowing the shapes and spin states of near-Earth asteroids is essential to understanding their dynamical evolution because of the Yarkovsky and YORP effects. Delay-Doppler radar imaging is the most powerful ground-based technique for imaging near-Earth asteroids and can obtain spatial resolution of <10 m, but frequently produces ambiguous pole direction solutions. A radar echo from an asteroid consists of a pattern of speckles caused by the interference of reflections from different parts of the surface. It is possible to determine an asteroid’s pole direction by tracking the motion of the radar speckle pattern. Speckle tracking can potentially measure the poles of at least several radar targets each year, rapidly increasing the available sample of NEA pole directions. We observed the near-Earth asteroid 2008 EV5 with the Arecibo planetary radar and the Very Long Baseline Array in December 2008. By tracking the speckles moving from the Pie Town to Los Alamos VLBA stations, we have shown that EV5 rotates retrograde. This is the first speckle detection of a near-Earth asteroid
Radar Observations and the Shape of Near-Earth Asteroid 2008 EV5
We observed the near-Earth asteroid 2008 EV5 with the Arecibo and Goldstone
planetary radars and the Very Long Baseline Array during December 2008. EV5
rotates retrograde and its overall shape is a 400 /pm 50 m oblate spheroid. The
most prominent surface feature is a ridge parallel to the asteroid's equator
that is broken by a concavity 150 m in diameter. Otherwise the asteroid's
surface is notably smooth on decameter scales. EV5's radar and optical albedos
are consistent with either rocky or stony-iron composition. The equatorial
ridge is similar to structure seen on the rubble-pile near-Earth asteroid
(66391) 1999 KW4 and is consistent with YORP spin-up reconfiguring the asteroid
in the past. We interpret the concavity as an impact crater. Shaking during the
impact and later regolith redistribution may have erased smaller features,
explaining the general lack of decameter-scale surface structure.Comment: This paper has been accepted for publication in Icarus:
http://www.sciencedirect.com/science/article/B6WGF-5207B2F-4/2/d87cd2ae4da00c2b277e2dc79a532c4
The Effects of Particulate Matter Sources on Daily Mortality: A Case-Crossover Study of Barcelona, Spain
Background: Dozens of studies link acute exposure to particulate matter (PM) air pollution with premature mortality and morbidity, but questions remain about which species and sources in the vast PM mixture are responsible for the observed health effects. Although a few studies exist on the effects of species and sources in U.S. cities, European cities—which have a higher proportion of diesel engines and denser urban populations—have not been well characterized. Information on the effects of specific sources could aid in targeting pollution control and in articulating the biological mechanisms of PM
Effect of air pollution on daily mortality in Hong Kong.
In different weather conditions, constituents and concentrations of pollutants, personal exposure, and biologic responses to air pollution may vary. In this study we assessed the effects of four air pollutants on mortality in both cool and warm seasons in Hong Kong, a subtropical city. Daily counts of mortality, due to all nonaccidental causes, and cardiovascular and respiratory diseases were modeled with daily pollutant concentrations [24-hr means for nitrogen dioxide, sulfur dioxide, and particulate matter < 10 microm in aerodynamic diameter (PM(10)); 8-hr mean for ozone]. using Poisson regression. We controlled for confounding factors by fitting the terms in models, in line with those recommended by the APHEA (Air Pollution and Health: a European Approach) protocol. Exposure-response relationships in warm and cool seasons were examined using generalized additive modeling. During the cool season, for a linear extrapolation of 10th-90th percentiles in the pollutant concentrations of all oxidant pollutants, NO(2), SO(2), and O(3), we found significant effects on all the mortality outcomes under study, with relative risks (RR) of 1.04-1.10 (p < 0.038, except p = 0.079 for SO(2) on respiratory mortality). We observed consistent positive exposure-response relationships during the cool season but not during the warm season. The effects of PM(10) were marginally significant (RR = 1.06; p = 0.054) for respiratory mortality but not for the other outcomes (p > 0.135). In this subtropical city, local air quality objectives should take into account that air pollution has stronger health effects during the cool rather than warm season and that oxidant pollutants are more important indicators of health effects than particulates
On the dynamical evolution of 2002 VE68
Minor planet 2002 VE68 was identified as a quasi-satellite of Venus shortly
after its discovery. At that time its data-arc span was only 24 days, now it is
2,947 days. Here we revisit the topic of the dynamical status of this
remarkable object as well as look into its dynamical past and explore its
future orbital evolution which is driven by close encounters with both the
Earth-Moon system and Mercury. In our calculations we use a Hermite integration
scheme, the most updated ephemerides and include the perturbations by the eight
major planets, the Moon and the three largest asteroids. We confirm that 2002
VE68 currently is a quasi-satellite of Venus and it has remained as such for at
least 7,000 yr after a close fly-by with the Earth. Prior to that encounter the
object may have already been co-orbital with Venus or moving in a classical,
non-resonant Near-Earth Object (NEO) orbit. The object drifted into the
quasi-satellite phase from an L4 Trojan state. We also confirm that, at
aphelion, dangerously close encounters with the Earth (under 0.002 AU, well
inside the Hill sphere) are possible. We find that 2002 VE68 will remain as a
quasi-satellite of Venus for about 500 yr more and its dynamical evolution is
controlled not only by the Earth, with a non-negligible contribution from the
Moon, but by Mercury as well. 2002 VE68 exhibits resonant (or near resonant)
behavior with Mercury, Venus and the Earth. Our calculations indicate that an
actual collision with the Earth during the next 10,000 yr is highly unlikely
but encounters as close as 0.04 AU occur with a periodicity of 8 years.Comment: 12 pages, 17 figures, accepted for publication in MNRAS (figures
scaled-down
- …