99 research outputs found

    BIM adoption and implementation for architectural practices

    Get PDF
    Severe issues about data acquisition and management arise during the design creation and development due to complexity, uncertainty and ambiguity. BIM (Building Information Modelling) is a tool for a team based lean design approach towards improved architectural practice across the supply chain. However, moving from a CAD (Computer Aided Design) approach to BIM (Building Information Modelling) represents a fundamental change for individual disciplines and the construction industry as a whole. Although BIM has been implemented by large practices, it is not widely used by SMEs (Small and Medium Sized Enterprises). Purpose: This paper aims to present a systematic approach for BIM implementation for Architectural SMEs at the organizational level Design/Methodology/Approach: The research is undertaken through a KTP (Knowledge transfer Partnership) project between the University of Salford and John McCall Architects (JMA) a SME based in Liverpool. The overall aim of the KTP is to develop lean design practice through BIM adoption. The BIM implementation approach uses a socio-technical view which does not only consider the implementation of technology but also considers the socio-cultural environment that provides the context for its implementation. The action research oriented qualitative and quantitative research is used for discovery, comparison, and experimentation as it provides �learning by doing�. Findings: The strategic approach to BIM adoption incorporated people, process and technology equally and led to capacity building through the improvements in process, technological infrastructure and upskilling of JMA staff to attain efficiency gains and competitive advantages. Originality/Value: This paper introduces a systematic approach for BIM adoption based on the action research philosophy and demonstrates a roadmap for BIM adoption at the operational level for SME companie

    Sustaining the National Spinal Cord Injury Registry of Iran (NSCIR-IR) in a Regional Center: Challenges and Solutions

    Get PDF
    Background: The National Traumatic Spinal Cord Injury Registry in Iran (NSCIR-IR), was implemented initially in three hospitals as a pilot phase from 11 Oct 2015 to 19 Jun 2016 and has been active in eight centers from 19 Jun 2016. Poursina Hospital, a trauma care referral center in Rasht, Guilan Province of Iran is one of the registry sites, and has been involved in registering eligible patients since 1 Jan 2016. This study aimed to identify the challenges and solutions for sustaining the NSCIR-IR in a regional center. Methods: This was a mixed-methods study. For the quantitative analysis, a retrospective observational design was used to measure case capture or case identification rate, mapping cases in the registry against those eligible for registry inclusion amongst the register of hospital admissions. For the qualitative component, data was collected using focus group discussions and semi-structured interviews, followed by thematic analysis. Results: From 19 Jun 2016 to 24 Jan 2018, the proportion of case capture (case identification rate) was 17%. The median time between case identification and data entry to the system was 30.5 d (range: 2 to 193 d). Thematic analysis identified a lack of trained human resources as the most important cause of low case identification rate and delay in data completion. Conclusion: Recruitment and education to increase trained human resources are needed to improve case capture, the timeliness of data input and registry sustainability in a regional participating site

    MPS Editor

    Get PDF
    Previously, it was time-consuming to hand-edit data and then set up simulation runs to find the effect and impact of the input data on a spacecraft. MPS Editor provides the user the capability to create/edit/update models and sequences, and immediately try them out using what appears to the user as one piece of software. MPS Editor provides an integrated sequencing environment for users. It provides them with software that can be utilized during development as well as actual operations. In addition, it provides them with a single, consistent, user friendly interface. MPS Editor uses the Eclipse Rich Client Platform to provide an environment that can be tailored to specific missions. It provides the capability to create and edit, and includes an Activity Dictionary to build the simulation spacecraft models, build and edit sequences of commands, and model the effects of those commands on the spacecraft. MPS Editor is written in Java using the Eclipse Rich Client Platform. It is currently built with four perspectives: the Activity Dictionary Perspective, the Project Adaptation Perspective, the Sequence Building Perspective, and the Sequence Modeling Perspective. Each perspective performs a given task. If a mission doesn't require that task, the unneeded perspective is not added to that project's delivery. In the Activity Dictionary Perspective, the user builds the project-specific activities, observations, calibrations, etc. Typically, this is used during the development phases of the mission, although it can be used later to make changes and updates to the Project Activity Dictionary. In the Adaptation Perspective, the user creates the spacecraft models such as power, data store, etc. Again, this is typically used during development, but will be used to update or add models of the spacecraft. The Sequence Building Perspective allows the user to create a sequence of activities or commands that go to the spacecraft. It provides a simulation of the activities and commands that have been created

    (2R)-4-[(9H-Fluoren-9-ylmeth­oxy)carbon­yl]-2-methyl­piperazin-1-ium chloride

    Get PDF
    The synthesis of the title salt, C20H23N2O2 +·Cl−, was carried out with a precursor of known absolute configuration (R) and the X-ray analysis confirmed that the product retained the absolute configuration. In the crystal, the dominant packing motif is a chain running along [010] generated by N—H⋯Cl hydrogen bonding. C—H⋯O and C—H⋯Cl inter­actions are also observed

    A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer

    Get PDF
    Local recurrence is a common cause of treatment failure for patients with solid tumors. Intraoperative detection of microscopic residual cancer in the tumor bed could be used to decrease the risk of a positive surgical margin, reduce rates of reexcision, and tailor adjuvant therapy. We used a protease-activated fluorescent imaging probe, LUM015, to detect cancer in vivo in a mouse model of soft tissue sarcoma (STS) and ex vivo in a first-in-human phase 1 clinical trial. In mice, intravenous injection of LUM015 labeled tumor cells, and residual fluorescence within the tumor bed predicted local recurrence. In 15 patients with STS or breast cancer, intravenous injection of LUM015 before surgery was well tolerated. Imaging of resected human tissues showed that fluorescence from tumor was significantly higher than fluorescence from normal tissues. LUM015 biodistribution, pharmacokinetic profiles, and metabolism were similar in mouse and human subjects. Tissue concentrations of LUM015 and its metabolites, including fluorescently labeled lysine, demonstrated that LUM015 is selectively distributed to tumors where it is activated by proteases. Experiments in mice with a constitutively active PEGylated fluorescent imaging probe support a model where tumor-selective probe distribution is a determinant of increased fluorescence in cancer. These co-clinical studies suggest that the tumor specificity of protease-activated imaging probes, such as LUM015, is dependent on both biodistribution and enzyme activity. Our first-in-human data support future clinical trials of LUM015 and other protease-sensitive probes

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium Infantis on Lewis lung cancer in mice

    Get PDF
    Soluble fms-like tyrosine kinase receptor (sFlt-1) is a soluble form of extramembrane part of vascular endothelial growth factor receptor-1 (VEGFR-1) that has antitumor effects. Bifidobacterium Infantis is a kind of non-pathogenic and anaerobic bacteria that may have specific targeting property of hypoxic environment inside of solid tumors. The aim of this study was to construct Bifidobacterium Infantis-mediated sFlt-1 gene transferring system and investigate its antitumor effect on Lewis lung cancer (LLC) in mice. Our results demonstrated that the Bifidobacterium Infantis-mediated sFlt-1 gene transferring system was constructed successfully and the system could express sFlt-1 at the levels of gene and protein. This system could not only significantly inhibit growth of human umbilical vein endothelial cells induced by VEGF in vitro, but also inhibit the tumor growth and prolong survival time of LLC C57BL/6 mice safely. These data suggest that Bifidobacterium Infantis-mediated sFlt-1 gene transferring system presents a promising therapeutic approach for the treatment of cancer
    corecore