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Abstract:  

Local recurrence is a common cause of treatment failure for patients with solid tumors.  Intra-

operative detection of microscopic residual cancer in the tumor bed could be used to decrease the 

risk of a positive surgical margin, reduce rates of re-excision, and tailor adjuvant therapy, all of 

which may contribute to improved disease control.  Here, we use a protease–activated 

fluorescent imaging probe, LUM015, to detect cancer in vivo in a mouse model of soft tissue 

sarcoma (STS) and ex vivo in a first-in-human Phase I clinical trial.  In mice, intravenous 

injection of LUM015 labeled tumor cells and residual fluorescence detected within the tumor 

bed predicted local recurrence.  In fifteen patients with STS or breast cancer, intravenous 

injection of LUM015 prior to surgery was well tolerated.  Imaging of resected human tissues 

showed that fluorescence from tumor was significantly higher than fluorescence from normal 

tissue.  Comparison of LUM015 biodistribution and metabolism in mouse and human subjects 

revealed similar pharmacokinetic profiles for this PEGylated imaging probe.  The major 

fluorescent LUM015 metabolite was determined to be Cy5-Lysine.  Tissue concentrations of 

LUM015 and its metabolites demonstrated that LUM015 is selectively distributed to tumors 

where it is activated by proteases to establish tumor to normal contrast.  Experiments in mice 

with a constitutively active PEGylated fluorescent imaging probe support a model where tumor-

selective probe distribution is a determinant of increased fluorescence in cancer.  These co-

clinical studies suggest that the tumor-specificity of protease-activated imaging probes, such as 

LUM015, is significantly dependent on both biodistribution and protease-activation.  These 

results support future clinical trials of LUM015 in which intraoperative imaging of the tumor bed 

is compared to surgical margin histopathology. 
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Main Text: 

Introduction 

Surgical resection is the primary treatment modality for most solid tumors diagnosed before 

metastatic spread.  In patients with soft tissue sarcoma (STS) of the extremity and breast cancer, 

organ-sparing surgery alone prevents local recurrence in approximately two-thirds of patients (1-

3).  With standard histopathological margin analysis, there is no way to identify which patients 

will recur after surgery alone and therefore, most patients receive adjuvant radiation therapy.  

Although radiation therapy significantly improves local recurrence-free survival for the entire 

population (1-4), the majority of patients, who would have achieved local control with surgery 

alone, derive no benefit from adjuvant radiation therapy.  Despite advances in the delivery of 

radiation therapy to decrease morbidity (5), radiation therapy can cause fibrosis, swelling, joint 

stiffness, and secondary malignancy.  Therefore, a method to identify patients with microscopic 

residual cancer in the tumor bed could stratify patients for adjuvant therapy.  

The risk of residual cancer remaining in the tumor bed is often inferred by the 

pathologist’s evaluation of the excised surgical margin.  If tumor cells are present at the surface 

of the excised margin, which is termed a positive margin, then a patient has an increased risk of 

local recurrence (2, 6). The current standard of care for intraoperative margin assessment 

consists of gross evaluation and histopathological examination of frozen sections of the tissue 

margin using light microscopy.  Assessment of frozen sections in the intraoperative period is 

limited by time and prone to sampling error, leading to false negative results in up to 23% of 

cases (7).  Importantly, this method uses the presence or absence of tumor cells on the margins of 

the resected tissue as a surrogate for what may be present in the tumor bed. An intraoperative 

technique to accurately identify microscopic residual disease within the tumor bed could be used 
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to decrease the risk of a positive surgical margin, reduce the rate of re-resection, and tailor 

adjuvant therapy.  

An emerging approach to detect microscopic residual disease within the tumor bed is to 

use optical imaging with fluorescent imaging probes.  Non-specific fluorescent imaging probes 

like methylene blue and indocyanine green (ICG) can provide contrast between tumor and 

normal tissues and are currently in clinical trials.  The tumor-to-background ratio (TBR) with 

these imaging agents ranges from 1.2-2.4 in mouse and human studies (8, 9). To increase the 

TBR, targeted fluorescent probes have also been developed.  These include fluorophores 

conjugated to peptides or antibodies that bind to receptors highly expressed on tumor cells (10-

12) as well as activatable probes that are optically silent until cleaved by proteases that are 

overexpressed by tumors (13).  Many proteolytic enzymes are upregulated intracellularly in 

cancer cells and extracellularly in the tumor microenvironment where they may play a role in 

tumor progression and spread (14).  Cathepsin proteases are a specific family of proteases that 

are highly upregulated in a variety of cancers when compared with normal tissues (15). 

Previously, we utilized the LSL-KrasG12D/+; p53Flox/Flox (KP) and BrafCa/+; p53Flox/Flox (BP) 

mouse models of STS to develop a wide field-of-view imaging system that detects fluorescence 

(16).  Because cathepsin proteases are preferentially expressed in STS compared to skeletal 

muscle, we used commercially available cathepsin-activated fluorescent probes to specifically 

label the tumor cells.  Residual fluorescence in the tumor bed correlated with local recurrence 

and we demonstrated that image-guided surgery improved outcomes for mice with positive 

residual fluorescence (16).  This intraoperative imaging system has also been utilized to detect 

residual disease within the tumor bed of canine patients with spontaneous tumors (17). 
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To translate this work into the operating room, we explored the use of LUM015 

(Lumicell, Inc., Wellesley, MA), a PEGylated protease-activated deep red fluorescent imaging 

probe containing a Cy5 fluorophore linked to a quencher by a polypeptide that contains an 

Arginine-Lysine protease cleavage site.  In this state, the probe is optically inactive but upon 

cleavage, the quencher is released so that Cy5 fluorescence can be detected (Supplementary 

Figure 1).  Preclinical toxicity studies of LUM015 were performed in rats and indicated a wide 

margin of safety.   

We report here a first-in-human Phase I trial of LUM015 to test the safety of the probe in 

patients undergoing surgery for STS and breast cancer and present pharmacokinetic data on 

LUM015 and its metabolites as well as imaging data of excised tumor and normal tissues.  Co-

clinical studies in mice were conducted to optimize the dose and timing of LUM015 

administration and to investigate the in vivo mechanisms of tumor-specificity.  Our studies 

support further clinical development of LUM015 in clinical trials with intra-operative imaging of 

the tumor bed. 

 

Results  

LUM015 fluorescently labels tumor cells in mice 

To test the specificity of the protease-activated probe LUM015 for tumor cells, we administered 

3.5 mg/kg LUM015 by tail vein injection into sixteen mice with primary STS in the left lower 

extremity.  Six hours later, we resected the STS and normal muscle from the contralateral leg.  

Fluorescence imaging of the resected tissues revealed mean tumor fluorescence which was 4.8 

times higher than the mean normal muscle fluorescence (Figure 1A, B; P<0.006).  We also 
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tested LUM015 in a mouse model of breast cancer and found that the mean tumor fluorescence 

was 3.6 times higher than the mean normal muscle fluorescence (Supplementary Figure 2).  

Because tumors consist of cancerous and stromal cells, such as macrophages, 

lymphocytes, and endothelial cells, we next investigated whether LUM015 labeled tumor cells 

and/or stromal cells.  For these experiments we utilized genetically engineered mice with a Cre-

activated yellow fluorescent reporter allele (Rosa26-LSL-YFP) so tumor cells express YFP.  

After primary sarcomas developed, we injected the mice with LUM015 (n=3) or phosphate 

buffered saline (PBS) as a control (n=2).  Six hours later, the tumors were resected, digested into 

single-cell suspensions, and analyzed by flow cytometry.  Tumors resected from mice injected 

with LUM015 had a significantly higher proportion of Cy5+ fluorescent cells compared controls 

(Figure 1C, D).  Over 60% of the LUM015-labeled cells were YFP+ tumor cells and less than 

10% were CD11b+ tumor associated monocytes and macrophages (Figure 1C, E), which 

suggests that the majority of Cy5 labeled cells are tumor cells.  Additionally, we found that the 

proportion of Cy5 labeled cells was higher in the YFP+ tumor cell population than in the 

CD11b+ population (Supplementary Figure 3). 

Having demonstrated that LUM015 fluorescently labels sarcoma cells, we next utilized a 

mouse model of STS with marginal resection to determine if residual fluorescence in the tumor 

bed after surgical removal of the tumor predicted local recurrence.  The presence of residual 

fluorescence within the tumor bed was determined intraoperatively as fluorescence exceeding 

80% of the minimum signal from the excised tumor as we described previously (Supplementary 

Figure 4) (16).  After imaging the tumor bed, the surgical wound was closed and the mice were 

monitored for local recurrence.  All of the mice with positive residual fluorescence developed 

local recurrence of their tumors within 70 days of surgery. In comparison, only one-third of the 
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mice with negative residual fluorescence developed local recurrence with 200 total days of 

follow-up (Figure 1F). 

A first-in-human Phase I clinical trial of LUM015 

After demonstrating that LUM015 selectively labeled sarcoma and breast cancer in mice and 

after completing pre-clinical toxicity studies in rats, we performed a first-in-human Phase I 

clinical trial of LUM015.  This trial enrolled fifteen patients, twelve with STS and three with 

breast cancer.  The tumor subtypes, grade, size and anatomic locations are described in Table 1. 

LUM015 was administered to six patients at a 0.5 mg/kg dose, six patients at a 1.0 mg/kg dose, 

and three patients at a 1.5 mg/kg dose according to a modified 3+3 design.  These human doses 

were chosen based on the estimated effective dose of 3.5 mg/kg in mice, which often 

corresponds to a lower effective dose in humans due to differences in the ratio of body surface 

area to body weight (18).  Surgery to remove the tumors immediately followed by ex vivo 

fluorescence imaging of the resected specimens occurred either the same day as probe injection 

(at  ~6 hours) or the following day (at ~30 hours).  Tissue samples imaged ex vivo were biopsied 

for subsequent histological analysis.  Patients treated with neoadjuvant radiation therapy were 

included in the study based on our previous data that radiation therapy does not alter the 

fluorescence from protease-activated imaging probes in a mouse model of STS (19).  LUM015 

was well tolerated by study subjects and no adverse pharmacological activity (APA), 

hypersensitivity reactions, or other significant adverse events occurred during the study 

(Supplementary Table 1).  All subjects experienced green chromaturia, which was expected 

based on the blue color of LUM015.  Two of 12 sarcoma patients had wound healing 

complications, which is within the expected range for this patent population.  These events were 

not considered related to LUM015.  Both of these patients had received pre-operative radiation 
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therapy, which is known to delay wound healing in soft tissue sarcoma patients(20). Of note, the 

tissue imaged for patient ten did not include tumor, and therefore this patient is excluded from 

analyses of tumor imaging.   

Co-clinical pharmacokinetic studies 

Blood samples were collected from mice and humans at regular intervals following intravenous 

(IV) administration of LUM015 and LC-MS/MS was used to measure the plasma concentration 

of LUM015 at these time points.  Summary pharmacokinetic parameters suggesting a linear dose 

response in humans are reported in Supplementary Table 2.  We observed that the LUM015 

plasma clearance profiles from mice and humans injected with a 1.5 mg/kg dose of LUM015 are 

similar (Figure 2A).  Based on these data, as well as the finding that tumor fluorescence in the 

first six humans imaged at 30 hours was lower than fluorescence measured in mice imaged at 6 

hours (Figure 2B), the imaging time point was shortened to 6 hours after LUM015 

administration for the remainder of the Phase I trial.  In both mice and humans, we found that 

absolute tumor fluorescence was significantly higher when measured 6 hours after LUM015 

administration compared to 30 hours (Figure 2B).  In contrast, we did not find a significant 

effect of imaging time on the tumor to normal tissue fluorescence ratio in humans or mice 

(Figure 2C). We also examined the effect of dose on tumor to normal tissue fluorescence ratios 

in mice and humans and found that the fluorescence ratio measured in humans administered the 

highest LUM015 dose (1.5 mg/kg) was significantly higher than in the two lower dose cohorts 

(Figure 2D).  However, we did not observe a significant difference in the fluorescence ratio 

between the 1.5 mg/kg and 3.5 mg/kg dose cohorts in mice. 
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LUM015 fluorescence is tumor-selective in STS and breast cancer patients 

To determine if preoperative administration of IV LUM015 results in tumor-specific 

fluorescence, we compared the absolute tumor fluorescence with the absolute fluorescence from 

adjacent normal tissue.  The presence or absence of cancer in the samples was confirmed by 

subsequent histological analysis by a pathologist blinded to the imaging data (Supplementary 

Table 3).  Normal muscle, adipose, or breast tissue from the margin of tissue resected around the 

tumor was used for the normal tissue comparison unless otherwise noted in Supplementary 

Table 3.  For each patient, we imaged 1 to 6 tumor and normal tissue sites that were 

histologically confirmed and the mean fluorescence value is reported.  We found that tumor 

fluorescence was significantly higher than matched normal tissue fluorescence and the mean 

tumor to normal fluorescence ratio was 4.1 (Figure 3A).  Furthermore, we found that the 

distribution of absolute tumor fluorescence values was significantly different from the 

distributions of absolute muscle and adipose tissue fluorescence values (Figure 3B).  Two 

representative examples of ex vivo imaging from a patient with a high grade undifferentiated 

pleomorphic sarcoma (UPS) of the thigh and a patient with a high grade invasive ductal 

carcinoma (IDC) of the breast are shown (Figure 3C, D).   

LUM015 forms two different optically active metabolites 

The protease-activated LUM015 fluorescent probe consists of a fluorescence quencher molecule 

(QSY21, Life Technologies) attached via a Gly-Gly-Arg-Lys peptide to a 20 kD PEG at the C-

terminus and a Cy5 fluorophore covalently linked to the amino group of lysine (Figure 4A).  

The hydrodynamic radius of 20 kD PEG has been reported as between 3 to 3.5 nm (21).  For this 

study, LUM015 was dissolved in PBS and the measurement was carried out at 37ºC to mimic 

physiologic conditions.  LUM015 was designed with a canonical arginine-lysine cathepsin 



11 
 

protease cleavage site, yielding an optically inactive Fragment 1 containing the quencher and an 

optically active Fragment 2, containing the Cy5 fluorophore and PEG.  Additional cleavage of 

LUM015 or Fragment 2 at the C-terminus of lysine yields optically active Fragment 3, consisting 

of the Cy5 fluorophore attached only to lysine (Figure 4A). Analysis of LUM015, Fragment 2, 

and Fragment 3 standards using high pressure liquid chromatography coupled with a 

fluorescence detector (HPLC-FD) revealed a distinct fluorescent peak for each fragment (Figure 

4B). The low-level fluorescence detected from the LUM015 standard is due to approximately 1% 

of Cy5 fluorescence not being absorbed by the fluorescence quencher.  We observed that the 

molar fluorescence intensity of Fragment 3 was greater than that of Fragment 2.  HPLC-FD 

analysis of patient plasma samples showed a strong peak corresponding to Fragment 3 as well as 

a smaller peak representing Fragment 2 and uncleaved LUM015 (Figure 4C).  Human plasma 

profiles of Fragment 3 were generated from HPLC-FD analysis and showed Fragment 3 levels 

increasing the first 8 hours after injection followed by clearance at a slower rate (Figure 4D).  To 

determine if formation of Fragment 3 occurs in a tumor-specific manner, we injected mice with 

and without primary STS with LUM015 and measured plasma Fragment 3 concentrations at 

several time points after administration.  At one hour, plasma levels of Fragment 3 peaked in 

mice with tumors, but by two hours, plasma levels decreased to a level similar to mice with no 

tumor, suggesting that Fragment 3 was appreciably produced in non-tumor tissues (Figure 4E).  

Furthermore, we incubated LUM015 with mouse blood, muscle, tumor, liver and kidney tissues 

in vitro to measure tissue-specific LUM015 metabolism (Supplementary Figure 5).  We found 

that in tumor tissue, the majority of LUM015 was metabolized whereas in blood, muscle, liver 

and kidney tissue, half or more the probe remained uncleaved.  Both Fragment 2 and Fragment 3 



12 
 

were measured in all tissues, but Fragment 2 was the predominant cleavage product in this in 

vitro experiment. 

The roles of biodistribution and protease activation in tumor fluorescence 

After determining that Fragment 3 was the major LUM015 metabolite in human plasma, we 

measured the concentration of Fragment 3 as well as LUM015 and Fragment 2 in human tissues 

in addition to a cohort of 18 mice injected with 1.5 mg/kg LUM015 and imaged at a 6 hour 

imaging time point. The tumor concentration of Fragment 3 was significantly correlated with 

tumor fluorescence in mice and humans (Figure 5A.)  A similar analysis of Fragment 2 in mouse 

and human samples showed a weaker correlation with tissue fluorescence (Supplementary 

Figure 6A).  To measure the contribution of probe activation by proteases to tumor-selective 

fluorescence, we calculated the fraction of LUM015 and its metabolites that were present in the 

optically active state for each mouse sample.  In the mouse cohort, sarcomas had a fraction of 

activated probe of 0.38 +/- 0.03 which was approximately 50% higher than normal muscle at 

0.26 +/- 0.03 (P<0.01, t-test) (Figure 5B).  In human tumor samples imaged at 6 hours, tumors 

had a fraction of activated probe of 0.26 +/- 0.06, which was approximately 60% higher 

compared to normal tissues at 0.16 +/- 0.02 (Supplementary Figure 6B), but this difference did 

not reach statistical significance in this sample (P=0.1, t-test).  In the human samples imaged at 

30 hours, there was no difference between normal and tumor tissue in the fraction of activated 

probe (Supplementary Figure 6B).  In the mouse STS cohort and in the human STS patients at 

the 6 hour imaging cohort with normal muscle available for comparison (Patients 8, 11, 12, 13, 

and 14),  tumor:muscle fluorescence ratios were correlated with the corresponding activation 

ratio (r2= 0.44 for human samples and r2=0.52 for mouse samples), however this correlation 

reached statistical significance only for the mouse samples (Figure 5C). To measure the 
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contribution of biodistribution to tumor-selective fluorescence, the total concentration of 

LUM015, Fragment 2, and Fragment 3 ([Total Probe]) was determined for each mouse and 

human sample (Figure 5D).  In the mouse cohort, sarcomas had a [Total Probe] of 221 +/- 34, 

which was approximately four times that of normal muscle at 56 +/- 6 (P<0.0001, t-test).  In the 

human STS cohort, sarcomas had a [Total Probe] of 154 +/- 38 which was approximately 100% 

higher compared to normal tissues at 72 +/- 13 (P=0.08, t-test).      Therefore, we tested whether 

tissue fluorescence correlated with total probe concentration in mouse and human sarcomas. We 

found the two variables to have a significant positive correlation in the mouse cohort, the human 

STS cohort, and the overall human dataset (Figure 5E, Supplementary Figure 6E).  These 

findings suggested that tumor-selective distribution of LUM015 is a critical determinant of tumor 

to normal fluorescence ratios which is further enhanced by tumor-specific protease activation.  

To image tumors with a probe that does not require protease activation, we injected STS-bearing 

mice with either LUM015 or LUM033 (Lumicell, Inc.), a constitutively active fluorescent 

imaging probe identical to Fragment 2.  We imaged resected tissues from these mice and found a 

tumor to normal tissue fluorescence ratio of 8 +/- 2 for LUM015 and 4 +/- 1 for LUM033 

(P<0.05) (Figure 5F).  Therefore, protease activation may serve to double the level of tumor to 

normal contrast that is achieved by tumor-selective biodistribution alone.   

Since biodistribution is one of two major determinants of tumor-specific fluorescence 

measured after administration of LUM015, we used immunofluorescence and 

immunohistochemistry techniques to further examine the distribution of LUM015 to tumor and 

normal tissues.  As a control for immunofluorescence, we used formalin fixed paraffin embedded 

(FFPE) sections of tumor tissue from a human sarcoma patient not injected with LUM015 

(Figure 6A).  In contrast to the negative control, immunofluorescent staining for PEG on FFPE 
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sections of tumors from patients who had been injected with LUM015 showed a positive signal 

(Figure 6A).  We also identified a breast cancer sample from patient 15 with areas of tumor and 

adjacent normal tissue.  PEG immunofluorescence staining of this section showed PEG signal 

localized to areas of tumor with less intense staining in areas of adjacent normal tissue (Figure 

6B).  Areas adjacent to tumor containing a lymphocytic infiltrate were also negative for PEG 

staining.  To quantify the intensity of PEG staining in tumors and matching normal tissues from 

humans injected with LUM015, we performed immunohistochemical staining for PEG on FFPE 

normal and tumor tissues.  We found that the intensity of PEG staining was less in normal 

muscle tissues and in normal breast tissues compared to sarcomas and breast cancer, respectively 

(Figure 6C).  One normal tissue sample and one tumor tissue sample from each patient was 

scored for intensity of PEG staining by two independent, blinded reviewers, revealing that the 

intensity of PEG staining is significantly higher in tumor tissues when compared to normal tissue 

(Figure 6D).  These results for PEG staining, together with the quantification of LUM015 and its 

metabolites, suggest that tumor-selective distribution of LUM015 may serve to delineate the 

tumor margin while protease activation intensifies the contrast between tumor and normal tissue 

types.    

Discussion  

There is an unmet need for a real-time method to determine the presence of microscopic residual 

cancer within the tumor bed at the time of surgery, which could reduce the need for re-resection, 

lower the rates of local recurrence, and personalize adjuvant therapy.  A particularly attractive 

approach to detect residual disease is fluorescence imaging, because it can be functionally and/or 

molecularly targeted and provide cellular resolution with penetration depths of up to several 

millimeters (10).  Although non-specific probes like ICG can preferentially accumulate in cancer 
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to provide fluorescent contrast between tumor and normal tissues, the tumor to normal tissue 

ratio is approximately 2 (9).  To try to increase the contrast between tumor and normal tissues 

targeted probes have been utilized that consist of a tumor-specific peptide or antibody conjugated 

to a fluorophore (11, 12).  Protease-activated probes may provide increased tumor to normal 

contrast as they are designed to be optically inactive until cleaved by proteases that are highly 

expressed in tumors, like cathepsin proteases and matrix metalloproteases (MMPs) (13, 22-24).  

Many of these probes have been developed and tested in preclinical models, but to date, there is 

no information on the use of these probes to image human cancers and the relative importance of 

protease-activation versus biodistribution for achieving tumor to normal tissue contrast has not 

been investigated.   

We show here that the PEGylated, protease-activated probe LUM015 specifically labels 

tumors in a mouse model of STS as well as in humans with STS and breast cancer.  Specifically, 

we injected LUM015 into genetically engineered mice with primary sarcomas to determine a 

tumor to normal tissue fluorescence ratio of 4.8, which is higher than the TBR reported for 

several non-specific and tumor-targeted probes (9, 11, 25, 26).  Flow cytometry studies of whole 

tumors from LUM015-injected mice showed that the majority of fluorescently labeled cells were 

tumor cells and less than one-tenth were tumor associated monocytes and macrophages.  The 

labeling of tumor-associated macrophages likely occurs because these cells also express high 

levels of proteases (27)  and the intraoperative identification and removal of these cells may, in 

fact, be beneficial to patients as these cells are associated with tumor progression and metastasis 

(28, 29). Importantly, in a model of sarcoma resection in mice injected with LUM015, residual 

fluorescence within the tumor bed was highly predictive of local recurrence, suggesting that this 

intraoperative imaging system could be useful to guide surgery and tailor adjuvant therapy.   
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In a first-in-human Phase I trial of LUM015 in patients undergoing surgical resection of 

STS or breast cancer we found that the PEGylated probe is safe and well-tolerated at a dose that 

allows for detection of tumor-specific fluorescence.  We observed that the plasma clearance 

profile of LUM015 in humans is similar to that observed in mice.  Based on the principles of 

allometric scaling, we expected that the clearance rate would be significantly slower in humans 

(30, 31), so that a greater interval of time between LUM015 administration and tumor resection 

would be required to allow for optimal tumor to normal tissue contrast.  Our results are 

consistent with findings that standard allometric scaling does not accurately predict human 

pharmacokinetic parameters for PEGylated compounds (32).   Based on this information, we 

modified the Phase I clinical trial to include imaging at a six-hour time point, which similar to 

the mouse experiments, resulted in higher tumor fluorescence in human cancers than imaging at 

30 hours.  Although imaging at a later time point does diminish the absolute strength of the 

fluorescent signal from tumors, this does not appreciably affect the tumor to normal tissue 

contrast.  Therefore, in a clinical scenario where surgery for an already injected patient is 

delayed for one day, re-administration of LUM015 may not be necessary.  Patients injected with 

the highest LUM015 dose tested, 1.5 mg/kg, had the largest tumor to normal fluorescence ratio, 

but this observation needs to be validated in future clinical trials with a larger sample size. 

Consistent with data in mice with primary sarcomas and dogs with spontaneous tumors 

(17), when patients with STS or breast cancer were injected with LUM015 prior to surgery, we 

found tumor tissue fluorescence measured ex vivo to be significantly higher than fluorescence 

measured from adjacent normal tissues.  Across all patients, we find the distribution of tumor 

fluorescence values to be significantly different from the distribution of muscle and adipose 

fluorescence values.  This suggests that with a larger cohort of patients, a range of normal tissue 
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fluorescence values could be determined that might define an absolute threshold to identify 

cancer.  It is important to note that this study included patients with both sarcoma and breast 

cancer, and that within these tumors, different subtypes were included.  A tumor to normal tissue 

fluorescence ratio of greater than 1 was measured in twelve of fourteen patients, indicating that 

LUM015 may be effective for fluorescent labeling of many different types of cancer.   

LUM015 was designed with a canonical cathepsin cleavage site consisting of two basic 

residues, arginine-lysine, to allow for enhanced cleavage and activation in tumors which often 

have higher expression of cathepsin proteases when compared to normal tissues (14, 33).  

Cleavage at this site results in the formation of optically active Fragment 2, which retains the 

Cy5 fluorophore and the 20 kD PEG.  Further cleavage at the peptide bond linking lysine to the 

PEG moiety, results in the formation of a distinct optically active metabolite Fragment 3 that 

lacks PEGylation.  We found Fragment 3 to be the major LUM015 metabolite in vivo with only 

minimal amounts of Fragment 2 in human plasma and tissue.  This suggests that, in humans, 

Fragment 3 is either produced more readily than Fragment 2 from uncleaved LUM015, or that 

any Fragment 2 that is formed is quickly cleaved to yield Fragment 3.  Interestingly, using mice 

we found that the generation of Fragment 3 in vivo does not require the presence of cancer.  

Indeed, we showed that in mice, Fragment 3 can be formed in isolated blood, muscle, liver, and 

kidney.  In primary sarcomas generated in mice, the extent of probe activation at 6 hours after 

LUM015 injection is 1.5 times higher than in normal tissues.  Furthermore, there is a significant 

correlation between tumor: normal fluorescence and probe activation ratios with an r2 value of 

0.52.  In the human sarcoma cohort, the extent of probe activation at 6 hours after LUM015 

injection is 1.6 times higher than in normal tissue and the correlation between tumor: normal 

fluorescence and probe activation ratios yields an r2 value of 0.44.  Although the data from the 
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human cohort does not reach statistical significance in this relatively small sample, it follows the 

trends found in the larger mouse cohort.   These data suggest that protease activation does not 

fully account for the tumor to normal fluorescence ratio of 5.2 measured in patients imaged at the 

6 hour imaging time point and therefore, indicates that additional factors may contribute to 

tumor-selective fluorescence. 

Tissue measurements of LUM015 and its metabolites showed that biodistribution was an 

important factor in tumor-selective fluorescence. The absolute concentration of Fragment 3 as 

well as the total concentration of LUM015 within the human tissues was highly correlated with 

tissue fluorescence.  This was consistent with the findings in mice.  We also found a significant 

difference between the concentration of LUM015 and its metabolites (total probe) in human 

tumor tissues compared to normal tissue.  At the 6 hour imaging time point, the concentration of 

probe was 2.2 times higher in tumors than in normal tissues.  In the mouse sarcoma cohort, the 

concentration of total probe was 3.9 times higher in tumors.  Furthermore, using 

immunohistochemistry and immunofluorescence, we found staining for the PEG moiety of 

LUM015 to be more intense in tumor tissues than in normal tissues.  Taken together, these data 

suggest that LUM015 selectively accumulates in tumors, likely via the enhanced permeability 

and retention (EPR) effect.  EPR describes the preferential distribution of macromolecules to 

tumors due to extravasation through leaky tumor vasculature and poor lymphatic drainage, which 

increases the delivery of large molecules into the tumor microenvironment and slows the rate of 

clearance from tumors (34, 35).  The results of this co-clinical study support a model in which 

protease-activated probes, like LUM015, are selectively delivered to tumor tissues where they 

are cleaved and activated.  Consistent with this model, we found that administration of a 

constitutively active fluorescent probe to tumor-bearing mice resulted in a 50% decrease in the 
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tumor to normal tissue fluorescence ratio when compared to LUM015.  Therefore, tumor-

specific protease activation serves to enhance the contrast that is established via differential 

distribution, suggesting that by targeting the tumor via both mechanisms simultaneously, a larger 

tumor to normal contrast is achieved. 

By understanding this cooperative mechanism of tumor-specific fluorescence, we may be 

able to better identify patients with cancer, who will benefit from intraoperative image-guided 

surgery with LUM015.  We observed a large spread of absolute tumor fluorescence values 

among humans and this was even present in primary STS-bearing mice with primary tumors 

initiated by the same genetic mutations.  This suggests that, even among tumors of the same 

subtype, differences in tumor vasculature and protease activity may lead to varying tumor 

fluorescence values from human to human.  The ability to detect these differences before surgery 

may allow the surgeon to determine whether LUM015 will be an effective tool for a specific 

patient.  It is possible that the extent of tumor-selective probe distribution may correlate with 

contrast-enhancement of the tumor us MRI or CT.  Furthermore, assays could be developed to 

detect protease activity in tissues obtained during routine diagnostic biopsies.       

This work presents a first-in-human Phase I clinical trial of an intravenously 

administered, protease-activated fluorescent intraoperative imaging probe.  We have shown that 

LUM015 is safe for use in humans and generates tumor-specific fluorescence.  These studies 

support future clinical trials of LUM015 utilizing intra-operative imaging of the tumor bed and 

comparing imaging results with histopathology.  Our co-clinical studies in mice and humans 

reveal that pharmacokinetic and pharmacodynamic parameters are conserved across species, 

which may aid in in the translation of other preclinical imaging agents for human use.  Finally, 

we have found that tumor-selective probe distribution and protease activation are significant 
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determinants of the tumor to normal contrast created by protease-activated fluorescent imaging 

probes.  

Materials and Methods 

Human Study Design 

The primary objective of the single institution, open-label, nonrandomized Phase I trial was to 

determine a safe and recommended dose of LUM015 that labels tumors.  Secondary objectives 

included obtaining ex vivo imaging information of the tumor and any adjacent normal appearing 

tissue as well as collecting pharmacokinetic/pharmacodynamic information regarding LUM015 

when administered intravenously in patients.  Patients with the diagnosis of soft tissue sarcoma 

or breast cancer scheduled for tumor resection at Duke University Medical Center were included.  

Twelve patients with soft tissue sarcoma and three patients with breast cancer were enrolled 

(Table 1).  The sample size was determined based on a modified 3+3 dose escalation design to 

provide information on the relationship between dose and fluorescence signal while observing 

patients for APA.  No outliers were excluded in this study.  Informed consent was obtained from 

each patient and the study was approved by the Duke University School of Medicine and 

Copernicus Institutional Review Boards.  The study was also run under an Investigational New 

Drug (IND) application filed with the Food and Drug Administration (FDA).  A Safety 

Monitoring Committee was formed to protect the rights, safety, and welfare of participants and 

additional monitoring occurred via the Duke Cancer Institute (DCI) Safety Oversight Committee. 

A safety evaluation consisting of history & physical exam, vital signs, electrocardiogram 

(ECG), blood and urine laboratory studies, and pulmonary function tests (PFTs) were conducted 

prior to peripheral intravenous (IV) administration of LUM015 at three predetermined doses: 0.5 

mg/kg, 1.0 mg/kg, or 1.5 mg/kg.  The LUM015 injection was administered either the day before 
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or on the morning of surgery.  LUM015 was supplied free-of-charge from Lumicell Inc.  Safety 

evaluations during the 24-hour period after IV injection consisted of vital signs, ECGs, blood and 

urine laboratory studies and documentation of any APA.  APA was defined as any functional 

effect on the major physiological systems that is at least probably attributable to LUM015.  

Laboratory studies and APA evaluation were performed again at an optional 48 hour time point 

after LUM015 injection and subjects returned to the study site once a week for 2 weeks after 

surgery for evaluations consisting of vital signs, laboratory studies, and documentation of any 

APA.  PFTs were repeated at the 2 week visit.  An end of study assessment occurred 30-35 days 

post LUM015 administration for APA.  Patient blood samples were collected before and in the 

24-48 hours after LUM015 administration for pharmacokinetic and pharmacodynamic studies. 

Patients underwent standard operative and peri-operative treatment.  Resected patient tissues 

underwent standard surgical pathology procedures before being imaged and sampled for the 

study with the guidance of a clinical pathologist blinded to the fluorescence imaging 

measurements. 

Mouse Study Design 

All animal studies were performed in accordance with protocols approved by the Duke 

University or Massachusetts General Hospital (MGH) Institutional Animal Care and Use 

Committee.  The objective of the controlled laboratory experiments was to use a primary mouse 

model of soft tissue sarcoma and orthotopic models of breast cancer to explore the mechanism of 

LUM015 distribution and activation in vivo.  We used genetically engineered mice to model the 

in vivo activity of LUM015 as well as a source for tissues and cell lines for in vitro studies.  

Sample sizes were selected prior to initiating the study based on prior intraoperative imaging 

studies conducted in the lab (16) and power calculations performed as described previously (36).  
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Data collection was stopped if a smaller sample size achieved statistical significance.  No 

outliers were excluded in this study.  The mice in this study were not randomized to their 

treatments and were selected based on availability.  The investigators were not blinded when 

performing tissue fluorescence measurements.  Histological examination was performed by a 

pathologist blinded to the fluorescence imaging measurements. 

Tumor-bearing mice 

Primary soft tissue sarcomas were generated using the previously described alleles, LSL-

KrasG12D(37), BrafCA(38),  p53Fl (39), and LSL-YFP(40).  LSL-YFP mice were obtained from 

Jackson Laboratory (Bar Harbor, ME).  STS were initiated by intramuscular injection of an 

adenovirus expressing Cre-recombinase as previously described (41) into the hind limb or mice 

with the genotype BrafCA/+;p53fl/fl (BP) or LSL-YFP; LSL-KrasG12D/+; p53fl/fl (KPY).  BP mice 

were used for all experiments except flow cytometry studies, where KPY mice were used.  Mice 

were administered LUM015 or LUM033 via tail vein injection when tumors reached about 1000 

mm3.  After a specified time interval, the animals were euthanized and tumor and normal tissues 

were removed for fluorescence imaging and other analyses.  Alternatively, tumors were removed 

and intraoperative assessment of residual fluorescence was performed as described previously 

(16), and animals were monitored for local recurrence.  After tumor resection, in vivo imaging of 

the tumor bed was performed with the LUM imaging device to test for the presence of residual 

fluorescence followed by closure of the surgical wound.  Blood samples for pharmacokinetic 

studies were obtained from the submandibular vein. 

Orthotopic breast cancers were generated using MMTV-PyVT, FVB and BALB/c mice 

originally obtained from Jackson Laboratories and bred and maintained in the Cox-7 gnotobiotic 

animal facility of Edwin L. Steele Laboratory at MGH.  Spontaneous tumors were excised when 



23 
 

they reached ~8mm in diameter and a ~1 mm3 piece of viable tumor tissue was transplanted 

orthotopically into syngeneic FVB female mice (42).  Alternatively, single breast tumors were 

established by implanting 1 x 105 4T1 cells into the third mammary fat pad (43).  4T1 cells 

(ATCC) were cultured in high-glucose DMEM (ATCC) with 10% FBS and 1% MEM NEAA 

(Invitrogen).  Cell lines were authenticated in 2013 by IDEXX laboratories (IDEXX RADIL 

Case #14116-2013) and to found to be identical to the profile established for the 4T1 cell line 

(ATCC #CRL-2539).  When tumors reached 4-5 mm in diameter, administration of LUM015, 

imaging, and other analyses were performed as described above. 

Fluorescence Imaging 

The handheld LUM imaging device was described previously (16).  Excitation illumination from 

a 300-Watt Xenon lamp (Sunoptic Technologies, Jacksonville, Florida) was collimated and 

reflected toward a 627.5-672.5 nm band-pass excitation filter and then reflected toward the 

specimen.  The fluorescence emission was filtered by a 685-735 nm band pass element and 

relayed onto a charge coupled device (CCD) (PixelFly QE; PCO AG, Kelheim, Germany) which 

was connected to a computer for image acquisition and display. Normal and tumor tissues were 

identified grossly and the imaging tip was applied to the tissue to obtain 2-3 images of the same 

location.  The tissue was biopsied at the site of imaging for identification of the tissue type by 

histological analysis and measurement of LUM015 metabolites.    

Image Analysis 

Image processing was performed using a custom script developed in the Matlab programming 

environment (MathWorks, Natick, MA). This script applied standard corrections for background 

and signal distribution (44). A dark field background image was subtracted from both the image 

under study and a flat field correction image in order to eliminate background signal. The image 
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under study was then divided by the background-corrected flat-field image to correct for signal 

variations across the field of view. A 6 mm diameter cropping mask centered on the two 

dimensional CCD array was applied to the image under study prior to the generation of image 

statistics. Mean pixel intensities derived from the Matlab script are reported in this study. 

For visual representation of images, the contrast and brightness of images were adjusted 

as described previously (16) so that the reader can appreciate the differences in fluorescence 

intensities between tumor and normal tissue.  Brightness and contrast settings were determined 

based on the tumor image histogram and then applied to all images from the same patient or 

mouse. 

Histological Analysis 

Sample tissues were formalin fixed, paraffin embedded and sectioned to create 5 micron thick 

Hematoxylin and Eosin (H&E) stained slides.  Slides were reviewed with a clinical pathologist 

specializing in STS (DMC) who was blinded to tissue fluorescence measurements. 

Immunohistochemistry and Immunofluorescence 

Formalin fixed, paraffin embedded tissue samples from mice and humans injected with LUM015 

were obtained. 5 µm thick unstained sections were deparaffinized with xylene and rehydrated 

with a grades series of ethanol and water washes before immunostaining.  For PEG 

immunohistochemistry and immunofluorescence studies, the primary antibody was rat anti-PEG 

used at concentrations of 1:175 and 1:200, respectively (Abcam).  For immunohistochemistry, 

the secondary antibody was biotinylated rabbit anti-rat immunoglobulin G (1:200, Vector) and 

eight 40X fields were scored for intensity of PEG staining according to the following scale: 0- no 

staining, 1- minimal staining, 2- moderate staining, 3- intense staining.  Scoring was done by 
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three independent researchers who were blinded to the identity of the sample and the average 

score was used, rounded to the nearest whole number.   For immunofluorescence, the secondary 

antibody was Alexa Fluor 488-conjugated goat anti-rat immunoglobulin M (1:200, Life 

Technologies).  Nuclear staining was performed using Hoechst 33342 dye (1:1000, Life 

Technologies).  Pictures were acquired with a Leica SP5 inverted confocal microscope (Leica 

Microsystems) using Leica Suite software (Leica microsystems). 

Flow Cytometry 

KPY mice harboring primary sarcomas were injected with either 3.5 mg/kg of LUM015 or PBS 

vehicle and tumors were collected 6 hours after injection.  Cells were dissociated from tumors 

according to methods described previously (45).  Total cells dissociated from tumors were 

incubated with rat anti-mouse CD16/32 IgG (BD Pharmigen) and phycoerythrin (PE)-Cy5 

conjugated anti-mouse CD11b IgG (eBioscience).  Data were collected from at least 200,000 

cells by FACSCanto (BD Pharmigen) an analyzed by Flowjo (Tree Star, Inc). 

Liquid Chromatography/Mass spectrometry 

To prepare plasma samples, 20 µl of plasma was incubated at 45º C for 4 hours in a 2 mL 

polypropylene screw-cap vial with 8 µl of 1 ug/mL Fragment 1-13C10
15N6 (internal standard) and 

20 µl of 2.5 mg/mL trypsin in PBS.  After cooling to room temperature, 100 µl of 2% formic 

acid in acetonitrile was added to precipitate proteins followed by centrifugation for 5 minutes at 

16,000 g and removal of 20 µl of the supernatant for liquid chromatography/mass spectrometry 

(LC/MS/MS).  For tissue measurements, 50 µl of sample containing 1 part tissue homogenate 

and 2 parts H20 was incubated with 10 µl of 1 µg/mL Fragment 1-13C10
15N6 (internal standard) 

and 25 mg/mL trypsin in PBS.  Following protein precipitation and centrifugation, 10 µl of the 

supernatant was used for LC/MS/MS analysis. Calibration samples were prepared by adding 
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known amounts of pure Fragment 1 or LUM015 to control plasma or tissue homogenate and 

processed as above. 

 A Shimadzu 20A series liquid chromatography system with binary pumps, an 

autosampler, and column oven was used.  We used a 4.6 x 50 mm C18 Phenomenex Kinetex  

column with a 4 x 3 mm Kinetex guard column at 45ºC.  Samples were kept at 4ºC.  Mobile 

phase A: 0.1% formic acid in 80:20 water:acetonitrile.  Mobile phase B: acetonitrile.  A 1 

mL/min flow rate was used with the following elution gradient: 20-95% B for 0-1 min, 95% B 

for 1-2.5 min, 95-20% B for 2.5-2.6 min, and 20% B for 2.6-4 min for equilibration.  Total run 

time was 5 minutes.   

For electrospray ionization mass spectrometry (ESI-MS/MS) an AB/SCIEX API 4000 

QTrap tandem-mass spectrometer was used.  Optimization of parameters for positive mode 

electrospray (declustering potential, temperature, gas flow) and mass spectrometer 

(parent/daughter ions, quadrupole potential) was performed by direction infusion of the pure 

analyte Fragment 1 in to the ESI-LC/MS/MS system.  The following multiple reaction 

monitoring (MRM) transitions were monitored for quantification (m/z units): Fragment 1 parent 

ion (M+H)2+/daughter ion fragment as 533.2/371 and Fragment 1-13C10
15N6  parent ion 

(M+H)2+/daughter ion fragment as 541.1/371.  Analysis of calibration samples in the range of 

7.0-870 nM for plasma and 3.5-870 nM for tissue showed a linear response (r=0.999 criterion) 

and the low limits of quantification (LLOQ) were confirmed as 7 nM for plasma and 3.5 nM for 

tissue at a +/- 80% accuracy criterion. 

High Pressure Liquid Chromatography coupled with Absorbance and Fluorescence Detection  

To prepare samples, 30 µl of plasma or tissue homogenate  (1 part tissue + 2 parts H20) was 

shaken vigorously for 20 seconds at speed 4 in a FastPrep apparatus (Thermo-Savant) with 60 µl 
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methanol and 10 glass beads (1 mm, Bio Spec Inc.) in a 200 µl polypropylene conical vial.  The 

supernatant was added to 30 µl of 0.1% formic acid in water and 50 µl was injected into the high 

pressure liquid chromatography (HPLC) system. 

 For HPLC, a Waters 2695 pump/autosampler/ column heater module was used with a 3 x 

250 mm Phenomenex Hydro-RP column and 4 x 3 mm Kinetex guard column at 50º C.  Samples 

were kept at 10º C.  Mobile phase A consisted of 0.1% formic acid in water and mobile phase B 

was methanol.  The flow rate was 0.7 mL/min and the elution gradient was as follows: 10-30% B 

for 0-2 min, 30-90% B for 2-12 min, 90% B for 12-16 min, 90-10% B for 16-17 min, and 10% B 

for 17-27 min as equilibration.  The total run time was 27 minutes.         

 We used a Waters 2475 fluorescence detector (FD) with excitation at 649 nm and 

emission at 670 nm and a gain of 10 along with a Waters 2487 UV/Vis absorbance detector at 

649 nm.  The solvent flow from the column was split and adjusted to be equal (0.35 mL/min to 

each detector) to provide for equal peak retention time on both fluorescence and absorption 

chromatograms, allowing for Fragment 2 identification.  Separate sets of calibration samples in 

the 0.0375-300 µM range were prepared for LUM015, Fragment 2, and Fragment 3 by adding 

pure standards to control tumor homogenates.  Linear calibration responses were obtained for all 

three analytes in the concentration range measured (r=0.999 criterion) and the LLOQs were 

confirmed to be 37.5 nM at +/- 80% accuracy criterion. 

Statistics 

Results are presented as means +/- standard error of the mean (SEM) unless otherwise indicated.  

Two-tailed student’s t test was performed to compare the means of two groups and a matched 

pair t test was used when comparing fluorescent measurements from the same patient.  A Mann-

Whitney test was performed to compare the means of two groups when data was distributed non-
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parametrically.  Two-way ANOVA was performed to examine the interaction between two 

independent variables such as dose and imaging time and one-way ANOVA was used when 

measuring the effect of only one variable, such as tissue type.  These were followed by 

Bonferroni or Tukey’s post hoc multiple comparison tests for pairwise comparisons of individual 

treatments or tissue types.  For local recurrence studies, Kaplan-Meir analysis was performed 

with the log-rank test for statistical significance.  To find the correlation of two different 

measurements from the same sample, we determined the Pearson coefficient (r) and r2.  

Significance was assumed at P<0.05.  All calculations were performed using Prism 6 

(GraphPad).   

Supplementary Materials: 

Figure S1. In vitro protease activation of LUM015. 

Figure S2. LUM015 fluorescently labels tumors in a mouse model of breast cancer. 

Figure S3. The percentage of tumor cells that are Cy5+ after administration of LUM015. 

Figure S4. In vivo detection of residual fluorescence within the tumor bed. 

Table S1. Additional patient data from the first-in-human Phase I clinical trial of LUM015. 

Table S2. Summary pharmacokinetic data from mice and humans. 

Table S3. Ex vivo Imaging. 

Figure S5. In vitro incubation of LUM015 with mouse tissues. 

Table S5. Correlating tissue fluorescence with metabolite concentration. 

Figure S6. Increased distribution of LUM015 to tumor tissues correlates with tumor-selective 
fluorescence. 
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Figures: 

 

Figure 1:  LUM015 fluorescently labels tumor cells in a primary mouse model of STS. Mice 

with primary STS were administered intravenous LUM015 with subsequent imaging of tissues 

using the LUM device.  (A) The mean measured fluorescence was significantly higher in tumor 

when compared to the mean fluorescence from muscle (p<0.006, unpaired t-test, n=16 mice, 

meanmuscle=5.6 x 1010 counts/s/cm2, meantumor= 2.7 x 1011 counts/s/cm2).  (B) Representative 

fluorescence images of resected normal muscle (left) and sarcoma (right) are shown along with 

corresponding hematoxylin and eosin (H&E) stained histology below (scale bars = 5 mm for 

fluorescence images, 500 µm for H&E images, and 100 µm for high magnification insets).  The 

same contrast scale was applied to both fluorescence images.  (C) Representative flow cytometry 

analysis of resected mouse tumors expressing a tumor cell-specific YFP marker after intravenous 

administration of PBS or a 3.5 mg/kg dose of LUM015.  Note the tumor injected with LUM015 

has as an increase in the percentage of Cy5+ cells (red box), which are mostly YFP+ tumor cells 

(yellow box).  (D,E)  Quantification of flow cytometry data showing that (D) LUM015 injected 
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mice have a significant increase in the percentage of Cy5+ cells in the tumor (p<0.008, unpaired 

t-test, nPBS=2 mice, nLUM015= 3 mice) and that (E) these fluorescent cells are mostly YFP+ tumor 

cells with some CD11b+ tumor associated macrophages (p<0.0008, unpaired t-test, n=3 mice), 

respectively. (F) In a mouse model of tumor resection, residual fluorescence within the tumor 

bed measured before wound closure predicted local recurrence (p<0.002, Log-rank test).  Error 

bars represent SEM. 
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Table 1: Enrolled patients in first-in-human Phase I clinical trial of LUM015.  Fifteen patients 

were enrolled in the trial at one of three dose cohorts.  Imaging time was measured as the number 

hours elapsed between LUM015 injection and imaging of the resected tissues with the LUM 

device.  Histological descriptors are based on clinical surgical pathology reports. 
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Figure 2:  Comparative LUM015 pharmacokinetics in mouse and human subjects.  (A)  The 

LUM015 plasma clearance profile in mouse and human subjects administered a 1.5 mg/kg dose 

of LUM015 is similar.  Plasma LUM015 concentrations are given as a fraction of the maximum 

concentration and shown on a log scale. (B) In patients, shortening the time between injection of 

LUM015 and surgery with subsequent tissue imaging from 30 to 6 hours results in increased 

absolute tumor tissue fluorescence consistent with observations made in mice with primary 

sarcomas injected with a 1.5 mg/kg dose of LUM015 (Two-way ANOVA, Imaging time effect: 

F(1,16)=6.5, p<0.03).  (C) Similarly, as tumor to normal tissue fluorescence ratios in mice do not 
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vary significantly with changes in the imaging time, a significant change was not observed upon 

shortening the imaging time in human subjects  (Two-way ANOVA, Imaging time effect: 

F(1,16)=0.3, p<0.7).  Data in B, C is from n=5 mice per imaging time and human subjects in the 

0.5 mg/kg and 1.0 mg/kg dose cohorts.  The 1.5 mg/kg human dose cohort was not included in 

this analysis because these patients were only imaged at the 6 hour time point.  (D) Tumor to 

normal tissue fluorescence ratios measured in human, but not mouse, subjects varied 

significantly by dose cohort (One-way ANOVA of human data F(2,5)=9.4, p<0.02; includes all 

patients imaged at 6 hours except patient ten; nmouse= 5 per dose cohort), and the 1.5 mg/kg dose 

cohort had a significantly higher fluorescence ratio than the two lower dose cohorts (Tukey’s 

multiple comparisons test, p<0.05 for 0.5 mg/kg vs 1.5 mg/kg and 1.0 mg/kg vs 1.5 mg/kg). 

 

 

 

 

 

 

 

 

 



39 
 

 

Figure 3:  Tumor-selective fluorescence in patients receiving intravenous LUM015 prior to 

resection.  (A) Tumor tissue fluorescence is significantly higher than fluorescence measured 

from adjacent normal tissue in the same patient (p<0.002, paired t-test, n=14, excludes patient 

10).  (B)  The distribution of tumor tissue fluorescence across all patients is significantly 

different from the distributions of fluorescence values measured in muscle and adipose tissues 

(one-way ANOVA, p<0.04, ntumor=14, nmuscle=10, nadipose=11).  Data from patients with 

undifferentiated pleomorphic sarcoma (UPS) shown in red, invasive ductal carcinoma (IDC) of 

the breast in pink and other STS subtypes in black.  Representative human subjects with 
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undifferentiated pleomorphic sarcoma of the thigh (C, patient #2) and invasive ductal carcinoma 

of the breast (D, patient #9).  (C)  From left to right, gadolinium-enhanced MRI showing a large 

UPS of the thigh, gross tissue resection containing tumor (T) and normal muscle (M), H&E 

staining of imaged tumor tissue, fluorescence image of tumor tissue obtained with LUM device, 

H&E staining of imaged muscle, fluorescence image of muscle obtained with LUM device.  (D) 

From left to right, mammogram of the breast showing invasive ductal carcinoma, gross tissue 

resection containing tumor (T) and normal breast (N) tissue, H&E staining of tumor, 

fluorescence image of tumor obtained with LUM device, H&E staining of imaged breast tissue, 

fluorescence image of breast tissue obtained with LUM device.  For each pair of tumor and 

normal tissue the same contrast scale was applied.  Scale bars = 5 mm for fluorescence images, 

500 µm for H&E images, and 100 µm for high magnification insets. 
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Figure 4:  Cy5-Lysine is the major fluorescent LUM015 metabolite.  (A) Expected LUM015 

cleavage products based on the canonical cathepsin protease cleavage site between Arg and Lys, 

yielding optically inactive Fragment 1 containing the quencher and optically active Fragment 2 

containing the Cy5 fluorophore and a 20 kD PEG.  Fragment 3 results from cleavage of 

LUM015 or Fragment 2 in a lysine-promoted manner, yielding a metabolite that contains only a 

lysine residue with an attached Cy5.  (B) Analysis of pure LUM015 (25 ng/mL), Fragment 2 (25 

ng/mL), and Fragment 3 (2.5 ng/mL) standards using High Pressure Liquid Chromatography 

coupled with a fluorescence detector (HPLC-FD) showing distinct fluorescent peaks for each 

metabolite and LUM015 (approximately 1% of Cy5 fluorescence is not absorbed by the 

quencher).  (C) HPLC-FD analysis of patient plasma samples revealed Fragment 3 to be the 
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major metabolite with relatively minimal amounts of Fragment 2.  A representative example is 

shown with plasma collected from patient 14 at 8 hours after intravenous administration of 

LUM015.  (D) Human plasma profiles of Fragment 3 in three patients injected with 1.5 mg/kg 

LUM015 show Fragment 3 levels increasing in the first 8 hours after LUM015 administration 

with subsequent clearance.  (E) Tumor-bearing and non-tumor bearing mice were injected with 

1.5 mg/kg LUM015 and plasma Fragment 3 concentrations were measured using HPLC-FD , 

showing that in vivo formation of Fragment 3 does not require the presence of tumor cells (error 

bars represent SEM).   
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Figure 5:  Tumor-selective distribution and activation of LUM015.  (A) Tissue fluorescence is 

directly correlated with the concentration of Fragment 3 in mouse and human tumors, measured 

by HPLC-FD (linear regression with no constraints; Human: r2=0.53, P<0.01, n=14, data 

includes 1 tumor sample from each patient except patient 10 where no tumor sample was 

available; Mouse: r2=0.77, P<0.0001, n=16, data includes 1 tumor sample from each primary 

STS-bearing mouse except in two mice where fluorescence was not measured).  (B) The fraction 

of activated probe was determined for muscle and tumor tissue samples from human (n=5, 

patients 8 and 11-14) and mouse (n=18) STS subjects, using the equation: Fraction Activated 

Probe = ([Fragment 2 (nM)]tissue+[Fragment 3 (nM)]tissue)/([LUM015 (nM)]tissue+[Fragment 2 

(nM)]tissue+[Fragment 3 (nM)]tissue).  In both species, the fraction of activated probe was higher in 

tumors, and this was significant in the mouse cohort (P<0.01, t-test). (C)  There is a strong 

correlation between the tumor: muscle fluorescence ratio and the Fraction Activated Probe ratio 

in the mouse cohort (linear regression with y-intercept constrained to the origin, r2=0.52, P<0.01, 
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n=16).  A comparable correlation is found in the human STS cohort but it is not significant 

(linear regression with y-intercept constrained to the origin, r2=0.44, P=0.4, n=5).  (D) The total 

concentration of probe was determined for muscle and tumor tissue samples from human (n=5) 

and mouse (n=18) STS subjects, using the equation: [Total Probe (nM)]tissue=[LUM015 

(nM)]tissue+[Fragment 2 (nM)]tissue+[Fragment 3 (nM)]tissue.  The concentration of total probe was 

significantly higher in tumors than normal muscle in the mouse cohort (P<0.0001, t-test, n=18), 

with a similar trend in the human cohort that did not reach statistical significance (P=0.08, t-test, 

n=5).  (E) Tumor fluorescence is directly correlated with the concentration of total probe in the 

mouse and human STS cohorts (linear regression with y-intercept constrained to the origin, 

Human: r2=0.18, P<0.05, Mouse: r2=0.59, P<0.0001).  (F) Tumor to muscle fluorescence ratios 

measured in mice injected with equimolar amounts of either LUM015 or LUM033, a 

constitutively active fluorescent imaging probe identical to Fragment 2 (P<0.05, t-test, 

nLUM015=11, nLUM033=9).   
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Figure 6:  Immunofluorescent and immunohistochemical staining for the PEG moiety of 

LUM015 reveals a tumor-specific pattern.  (A) PEG immunofluorescence of human tumor 

samples shows high signal in tumors from LUM015 injected patients (+LUM015 representative 

image from patient #2) with no signal detected in a tumor from an uninjected patient (-LUM015) 

with UPS.  Blue, DAPI; green, PEG. (B) PEG immunofluorescence of formalin-fixed paraffin 

embedded margin tissue from LUM015 injected breast cancer patient #15, shows more intense 

PEG signal in areas that correspond with tumor (T) and less intense staining in areas of adjacent 

normal tissue (N).  The corresponding hematoxylin and eosin stained section is shown below.  

Blue, DAPI; green, PEG. (C) Immunohistochemistry for PEG reveals minimal staining in 

normal muscle tissues, moderate staining of normal breast tissue, and the most intense staining in 
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tumor tissues.  Representative images of normal muscle and undifferentiated pleomorphic 

sarcoma (patient #2) as well as normal breast and invasive ductal carcinoma (patient #9).  (D) 

PEG staining intensity is significantly higher in tumors than in normal tissues (P<0.0001, Mann 

Whitney test, data includes 1 tumor and 1 normal tissue sample from each patient except patient 

10 where no tumor sample was available).  Scale bars= 100 µm for immunofluorescence images 

and 500 µm for immunohistochemistry and H&E images. 

 


	A Mouse-Human Phase I Co-Clinical Trial of the Protease-Activated Fluorescent Probe LUM015 for Imaging Cancer

