64 research outputs found

    Introducing the Foreign Culture to Young Language Learners

    Get PDF
    The study of language cannot be separated from the study of culture. A good foreign language program should include cultural topics. They are potential for enabling learners to use the target language and for developing their motivation. In teaching young learners, teachers should skillfully integrate the culture of the target language in the materials. Children can effectively learn the foreign culture through meaningful experiences with cultural practices which are appropriate to their age and language ability. Interest in the culture of the target language can enhance language acquisition. This article discusses about the rationale for developing cultural awareness, and how to incorporate cultural elements in teaching English to young learners. As examples, it will demonstrate how songs and rhymes can be used as media for introducing the target culture.Keywords: culture, foreign, young learner

    Comparison of the Accuracy of the 7-Item HADS Depression Subscale and 14-Item Total HADS for Screening for Major Depression: A Systematic Review and Individual Participant Data Meta-Analysis

    Get PDF
    The seven-item Hospital Anxiety and Depression Scale Depression subscale (HADS-D) and the total score of the 14-item HADS (HADS-T) are both used for major depression screening. Compared to the HADS-D, the HADS-T includes anxiety items and requires more time to complete. We compared the screening accuracy of the HADS-D and HADS-T for major depression detection. We conducted an individual participant data metaanalysis and fit bivariate random effects models to assess diagnostic accuracy among participants with both HADS-D and HADS-T scores. We identified optimal cutoffs, estimated sensitivity and specificity with 95% confidence intervals, and compared screening accuracy across paired cutoffs via two-stage and individual-level models. We used a 0.05 equivalence margin to assess equivalency in sensitivity and specificity. 20,700 participants (2,285 major depression cases) from 98 studies were included. Cutoffs of ≥7 for the HADS-D (sensitivity 0.79 [0.75, 0.83], specificity 0.78 [0.75, 0.80]) and ≥15 for the HADS-T (sensitivity 0.79 [0.76, 0.82], specificity 0.81 [0.78, 0.83]) minimized the distance to the top-left corner of the receiver operating characteristic curve. Across all sets of paired cutoffs evaluated, differences of sensitivity between HADS-T and HADS-D ranged from −0.05 to 0.01 (0.00 at paired optimal cutoffs), and differences of specificity were within 0.03 for all cutoffs (0.02–0.03). The pattern was similar among outpatients, although the HADS-T was slightly (not nonequivalently) more specific among inpatients. The accuracy of HADS-T was equivalent to the HADSD for detecting major depression. In most settings, the shorter HADS-D would be preferred.Fil: Yin Wu. Lady Davis Institute For Medical Research; Canadá. McGill University; CanadáFil: Levis, Brooke. Lady Davis Institute For Medical Research; Canadá. Keele University; Reino UnidoFil: Daray, Federico Manuel. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Farmacologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ioannidis, John P. A.. University of Stanford; Estados UnidosFil: Patten, Scott B.. University of Calgary; CanadáFil: Cuijpers, Pim. Vrije Universiteit Amsterdam; Países BajosFil: Ziegelstein, Roy C.. University Johns Hopkins; Estados UnidosFil: Gilbody, Simon. University of York; Reino UnidoFil: Fischer, Felix H.. Universität zu Berlin; AlemaniaFil: Fan, Suiqiong. Jewish General Hospital; CanadáFil: Sun, Ying. Jewish General Hospital; CanadáFil: He, Chen. Jewish General Hospital; CanadáFil: Krishnan, Ankur. Jewish General Hospital; CanadáFil: Neupane, Dipika. Jewish General Hospital; CanadáFil: Bhandari, Parash Mani. Jewish General Hospital; CanadáFil: Negeri, Zelalem. Jewish General Hospital; CanadáFil: Riehm, Kira E.. Jewish General Hospital; CanadáFil: Rice, Danielle B.. Jewish General Hospital; CanadáFil: Azar, Marleine. Jewish General Hospital; CanadáFil: Yan, Xin Wei. Jewish General Hospital; CanadáFil: Imran, Mahrukh. Jewish General Hospital; CanadáFil: Chiovitti, Matthew J.. Jewish General Hospital; CanadáFil: Boruff, Jill T.. McGill University; CanadáFil: McMillan, Dean. University of York; Reino UnidoFil: Kloda, Lorie A.. Concordia University; CanadáFil: Wiese, Birgitt. Hannover Medical School; AlemaniaFil: Williams, Lana J.. Universidad Complutense de Madrid; EspañaFil: Wong, Lai Yi. Kwai Chung Hospital; ChinaFil: Benedetti, Andrea. McGill University; CanadáFil: Thombs, Brett D.. McGill University; Canadá. Jewish General Hospital; Canad

    Overestimation of Postpartum Depression Prevalence Based on a 5-item Version of the EPDS:Systematic Review and Individual Participant Data Meta-analysis

    Get PDF
    Objective:The Maternal Mental Health in Canada, 2018/2019, survey reported that 18% of 7,085 mothers who recently gave birth reported "feelings consistent with postpartum depression" based on scores >= 7 on a 5-item version of the Edinburgh Postpartum Depression Scale (EPDS-5). The EPDS-5 was designed as a screening questionnaire, not to classify disorders or estimate prevalence; the extent to which EPDS-5 results reflect depression prevalence is unknown. We investigated EPDS-5 >= 7 performance relative to major depression prevalence based on a validated diagnostic interview, the Structured Clinical Interview for DSM (SCID).Methods:We searched Medline, Medline In-Process & Other Non-Indexed Citations, PsycINFO, and the Web of Science Core Collection through June 2016 for studies with data sets with item response data to calculate EPDS-5 scores and that used the SCID to ascertain depression status. We conducted an individual participant data meta-analysis to estimate pooled percentage of EPDS-5 >= 7, pooled SCID major depression prevalence, and the pooled difference in prevalence.Results:A total of 3,958 participants from 19 primary studies were included. Pooled prevalence of SCID major depression was 9.2% (95% confidence interval [CI] 6.0% to 13.7%), pooled percentage of participants with EPDS-5 >= 7 was 16.2% (95% CI 10.7% to 23.8%), and pooled difference was 8.0% (95% CI 2.9% to 13.2%). In the 19 included studies, mean and median ratios of EPDS-5 to SCID prevalence were 2.1 and 1.4 times.Conclusions:Prevalence estimated based on EPDS-5 >= 7 appears to be substantially higher than the prevalence of major depression. Validated diagnostic interviews should be used to establish prevalence

    A Functional Genomic Screen Combined with Time-Lapse Microscopy Uncovers a Novel Set of Genes Involved in Dorsal Closure of Drosophila Embryos

    Get PDF
    Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes

    Individual participant data meta-analysis to compare EPDS accuracy to detect major depression with and without the self-harm item

    Get PDF
    Item 10 of the Edinburgh Postnatal Depression Scale (EPDS) is intended to assess thoughts of intentional self-harm but may also elicit concerns about accidental self-harm. It does not specifically address suicide ideation but, nonetheless, is sometimes used as an indicator of suicidality. The 9-item version of the EPDS (EPDS-9), which omits item 10, is sometimes used in research due to concern about positive endorsements of item 10 and necessary follow-up. We assessed the equivalence of total score correlations and screening accuracy to detect major depression using the EPDS-9 versus full EPDS among pregnant and postpartum women. We searched Medline, Medline In-Process and Other Non-Indexed Citations, PsycINFO, and Web of Science from database inception to October 3, 2018 for studies that administered the EPDS and conducted diagnostic classification for major depression based on a validated semi-structured or fully structured interview among women aged 18 or older during pregnancy or within 12 months of giving birth. We conducted an individual participant data meta-analysis. We calculated Pearson correlations with 95% prediction interval (PI) between EPDS-9 and full EPDS total scores using a random effects model. Bivariate random-effects models were fitted to assess screening accuracy. Equivalence tests were done by comparing the confidence intervals (CIs) around the pooled sensitivity and specificity differences to the equivalence margin of δ = 0.05. Individual participant data were obtained from 41 eligible studies (10,906 participants, 1407 major depression cases). The correlation between EPDS-9 and full EPDS scores was 0.998 (95% PI 0.991, 0.999). For sensitivity, the EPDS-9 and full EPDS were equivalent for cut-offs 7–12 (difference range − 0.02, 0.01) and the equivalence was indeterminate for cut-offs 13–15 (all differences − 0.04). For specificity, the EPDS-9 and full EPDS were equivalent for all cut-offs (difference range 0.00, 0.01). The EPDS-9 performs similarly to the full EPDS and can be used when there are concerns about the implications of administering EPDS item 10. Trial registration: The original IPDMA was registered in PROSPERO (CRD42015024785)

    Depression prevalence using the HADS-D compared to SCID major depression classification:An individual participant data meta-analysis

    Get PDF
    Objectives: Validated diagnostic interviews are required to classify depression status and estimate prevalence of disorder, but screening tools are often used instead. We used individual participant data meta-analysis to compare prevalence based on standard Hospital Anxiety and Depression Scale – depression subscale (HADS-D) cutoffs of ≥8 and ≥11 versus Structured Clinical Interview for DSM (SCID) major depression and determined if an alternative HADS-D cutoff could more accurately estimate prevalence. Methods: We searched Medline, Medline In-Process & Other Non-Indexed Citations via Ovid, PsycINFO, and Web of Science (inception-July 11, 2016) for studies comparing HADS-D scores to SCID major depression status. Pooled prevalence and pooled differences in prevalence for HADS-D cutoffs versus SCID major depression were estimated. Results: 6005 participants (689 SCID major depression cases) from 41 primary studies were included. Pooled prevalence was 24.5% (95% Confidence Interval (CI): 20.5%, 29.0%) for HADS-D ≥8, 10.7% (95% CI: 8.3%, 13.8%) for HADS-D ≥11, and 11.6% (95% CI: 9.2%, 14.6%) for SCID major depression. HADS-D ≥11 was closest to SCID major depression prevalence, but the 95% prediction interval for the difference that could be expected for HADS-D ≥11 versus SCID in a new study was −21.1% to 19.5%. Conclusions: HADS-D ≥8 substantially overestimates depression prevalence. Of all possible cutoff thresholds, HADS-D ≥11 was closest to the SCID, but there was substantial heterogeneity in the difference between HADS-D ≥11 and SCID-based estimates. HADS-D should not be used as a substitute for a validated diagnostic interview.This study was funded by the Canadian Institutes of Health Research (CIHR, KRS-144045 & PCG 155468). Ms. Neupane was supported by a G.R. Caverhill Fellowship from the Faculty of Medicine, McGill University. Drs. Levis and Wu were supported by Fonds de recherche du Québec - Santé (FRQS) Postdoctoral Training Fellowships. Mr. Bhandari was supported by a studentship from the Research Institute of the McGill University Health Centre. Ms. Rice was supported by a Vanier Canada Graduate Scholarship. Dr. Patten was supported by a Senior Health Scholar award from Alberta Innovates, Health Solutions. The primary study by Scott et al. was supported by the Cumming School of Medicine and Alberta Health Services through the Calgary Health Trust, and funding from the Hotchkiss Brain Institute. The primary study by Amoozegar et al. was supported by the Alberta Health Services, the University of Calgary Faculty of Medicine, and the Hotchkiss Brain Institute. The primary study by Cheung et al. was supported by the Waikato Clinical School, University of Auckland, the Waikato Medical Research Foundation and the Waikato Respiratory Research Fund. The primary study by Cukor et al. was supported in part by a Promoting Psychological Research and Training on Health-Disparities Issues at Ethnic Minority Serving Institutions Grants (ProDIGs) awarded to Dr. Cukor from the American Psychological Association. The primary study by De Souza et al. was supported by Birmingham and Solihull Mental Health Foundation Trust. The primary study by Honarmand et al. was supported by a grant from the Multiple Sclerosis Society of Canada. The primary study by Fischer et al. was supported as part of the RECODEHF study by the German Federal Ministry of Education and Research (01GY1150). The primary study by Gagnon et al. was supported by the Drummond Foundation and the Department of Psychiatry, University Health Network. The primary study by Akechi et al. was supported in part by a Grant-in-Aid for Cancer Research (11−2) from the Japanese Ministry of Health, Labour and Welfare and a Grant-in-Aid for Young Scientists (B) from the Japanese Ministry of Education, Culture, Sports, Science and Technology. The primary study by Kugaya et al. was supported in part by a Grant-in-Aid for Cancer Research (9–31) and the Second-Term Comprehensive 10-year Strategy for Cancer Control from the Japanese Ministry of Health, Labour and Welfare. The primary study Ryan et al. was supported by the Irish Cancer Society (Grant CRP08GAL). The primary study by Keller et al. was supported by the Medical Faculty of the University of Heidelberg (grant no. 175/2000). The primary study by Love et al. (2004) was supported by the Kathleen Cuningham Foundation (National Breast Cancer Foundation), the Cancer Council of Victoria and the National Health and Medical Research Council. The primary study by Love et al. (2002) was supported by a grant from the Bethlehem Griffiths Research Foundation. The primary study by Löwe et al. was supported by the medical faculty of the University of Heidelberg, Germany (Project 121/2000). The primary study by Navines et al. was supported in part by the Spanish grants from the Fondo de Investigación en Salud, Instituto de Salud Carlos III (EO PI08/90869 and PSIGEN-VHC Study: FIS-E08/00268) and the support of FEDER (one way to make Europe). The primary study by O'Rourke et al. was supported by the Scottish Home and Health Department, Stroke Association, and Medical Research Council. The primary study by Sanchez-Gistau et al. was supported by a grant from the Ministry of Health of Spain (PI040418) and in part by Catalonia Government, DURSI 2009SGR1119. The primary study by Gould et al. was supported by the Transport Accident Commission Grant. The primary study by Rooney et al. was supported by the NHS Lothian Neuro-Oncology Endowment Fund. The primary study by Schwarzbold et al. was supported by PRONEX Program (NENASC Project) and PPSUS Program of Fundaçao de Amparo a esquisa e Inovacao do Estado de Santa Catarina (FAPESC) and the National Science and Technology Institute for Translational Medicine (INCT-TM). The primary study by Simard et al. was supported by IDEA grants from the Canadian Prostate Cancer Research Initiative and the Canadian Breast Cancer Research Alliance, as well as a studentship from the Canadian Institutes of Health Research. The primary study by Singer et al. (2009) was supported by a grant from the German Federal Ministry for Education and Research (no. 01ZZ0106). The primary study by Singer et al. (2008) was supported by grants from the German Federal Ministry for Education and Research (# 7DZAIQTX) and of the University of Leipzig (# formel. 1–57). The primary study by Meyer et al. was supported by the Federal Ministry of Education and Research (BMBF). The primary study by Stone et al. was supported by the Medical Research Council, UK and Chest Heart and Stroke, Scotland. The primary study by Turner et al. was supported by a bequest from Jennie Thomas through Hunter Medical Research Institute. The primary study by Walterfang et al. was supported by Melbourne Health. Drs. Benedetti and Thombs were supported by FRQS researcher salary awards. No other authors reported funding for primary studies or for their work on this study. No funder had any role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication

    Overestimation of Postpartum Depression Prevalence Based on a 5-item Version of the EPDS: Systematic Review and Individual Participant Data Meta-analysis

    Get PDF
    Objective:The Maternal Mental Health in Canada, 2018/2019, survey reported that 18% of 7,085 mothers who recently gave birth reported "feelings consistent with postpartum depression" based on scores >= 7 on a 5-item version of the Edinburgh Postpartum Depression Scale (EPDS-5). The EPDS-5 was designed as a screening questionnaire, not to classify disorders or estimate prevalence; the extent to which EPDS-5 results reflect depression prevalence is unknown. We investigated EPDS-5 >= 7 performance relative to major depression prevalence based on a validated diagnostic interview, the Structured Clinical Interview for DSM (SCID).Methods:We searched Medline, Medline In-Process & Other Non-Indexed Citations, PsycINFO, and the Web of Science Core Collection through June 2016 for studies with data sets with item response data to calculate EPDS-5 scores and that used the SCID to ascertain depression status. We conducted an individual participant data meta-analysis to estimate pooled percentage of EPDS-5 >= 7, pooled SCID major depression prevalence, and the pooled difference in prevalence.Results:A total of 3,958 participants from 19 primary studies were included. Pooled prevalence of SCID major depression was 9.2% (95% confidence interval [CI] 6.0% to 13.7%), pooled percentage of participants with EPDS-5 >= 7 was 16.2% (95% CI 10.7% to 23.8%), and pooled difference was 8.0% (95% CI 2.9% to 13.2%). In the 19 included studies, mean and median ratios of EPDS-5 to SCID prevalence were 2.1 and 1.4 times.Conclusions:Prevalence estimated based on EPDS-5 >= 7 appears to be substantially higher than the prevalence of major depression. Validated diagnostic interviews should be used to establish prevalence

    Probability of Major Depression Classification Based on the SCID, CIDI and MINI Diagnostic Interviews : A Synthesis of Three Individual Participant Data Meta-Analyses

    Get PDF
    Three previous individual participant data meta-analyses (IPDMAs) reported that, compared to the Structured Clinical Interview for the DSM (SCID), alternative reference standards, primarily the Composite International Diagnostic Interview (CIDI) and the Mini International Neuropsychiatric Interview (MINI), tended to misclassify major depression status, when controlling for depression symptom severity. However, there was an important lack of precision in the results.To compare the odds of the major depression classification based on the SCID, CIDI, and MINI.We included and standardized data from 3 IPDMA databases. For each IPDMA, separately, we fitted binomial generalized linear mixed models to compare the adjusted odds ratios (aORs) of major depression classification, controlling for symptom severity and characteristics of participants, and the interaction between interview and symptom severity. Next, we synthesized results using a DerSimonian-Laird random-effects meta-analysis.In total, 69,405 participants (7,574 [11%] with major depression) from 212 studies were included. Controlling for symptom severity and participant characteristics, the MINI (74 studies; 25,749 participants) classified major depression more often than the SCID (108 studies; 21,953 participants; aOR 1.46; 95% confidence interval [CI] 1.11-1.92]). Classification odds for the CIDI (30 studies; 21,703 participants) and the SCID did not differ overall (aOR 1.19; 95% CI 0.79-1.75); however, as screening scores increased, the aOR increased less for the CIDI than the SCID (interaction aOR 0.64; 95% CI 0.52-0.80).Compared to the SCID, the MINI classified major depression more often. The odds of the depression classification with the CIDI increased less as symptom levels increased. Interpretation of research that uses diagnostic interviews to classify depression should consider the interview characteristics
    corecore