840 research outputs found

    Update on the human and mouse lipocalin (LCN) gene family, including evidence the mouse Mup cluster is result of an evolutionary bloom .

    Get PDF
    Lipocalins (LCNs) are members of a family of evolutionarily conserved genes present in all kingdoms of life. There are 19 LCN-like genes in the human genome, and 45 Lcn-like genes in the mouse genome, which include 22 major urinary protein (Mup) genes. The Mup genes, plus 29 of 30 Mup-ps pseudogenes, are all located together on chromosome (Chr) 4; evidence points to an evolutionary bloom that resulted in this Mup cluster in mouse, syntenic to the human Chr 9q32 locus at which a single MUPP pseudogene is located. LCNs play important roles in physiological processes by binding and transporting small hydrophobic molecules -such as steroid hormones, odorants, retinoids, and lipids-in plasma and other body fluids. LCNs are extensively used in clinical practice as biochemical markers. LCN-like proteins (18-40 kDa) have the characteristic eight β-strands creating a barrel structure that houses the binding-site; LCNs are synthesized in the liver as well as various secretory tissues. In rodents, MUPs are involved in communication of information in urine-derived scent marks, serving as signatures of individual identity, or as kairomones (to elicit fear behavior). MUPs also participate in regulation of glucose and lipid metabolism via a mechanism not well understood. Although much has been learned about LCNs and MUPs in recent years, more research is necessary to allow better understanding of their physiological functions, as well as their involvement in clinical disorders

    Feedback control of AHR signalling regulates intestinal immunity

    Get PDF
    The aryl hydrocarbon receptor (AHR) recognizes xenobiotics as well as natural compounds such as tryptophan metabolites, dietary components and microbiota-derived factors, and it is important for maintenance of homeostasis at mucosal surfaces. AHR activation induces cytochrome P4501 (CYP1) enzymes, which oxygenate AHR ligands, leading to their metabolic clearance and detoxification. Thus, CYP1 enzymes have an important feedback role that curtails the duration of AHR signalling, but it remains unclear whether they also regulate AHR ligand availability in vivo. Here we show that dysregulated expression of Cyp1a1 in mice depletes the reservoir of natural AHR ligands, generating a quasi AHR-deficient state. Constitutive expression of Cyp1a1 throughout the body or restricted specifically to intestinal epithelial cells resulted in loss of AHR-dependent type 3 innate lymphoid cells and T helper 17 cells and increased susceptibility to enteric infection. The deleterious effects of excessive AHR ligand degradation on intestinal immune functions could be counter-balanced by increasing the intake of AHR ligands in the diet. Thus, our data indicate that intestinal epithelial cells serve as gatekeepers for the supply of AHR ligands to the host and emphasize the importance of feedback control in modulating AHR pathway activation

    Update of the human and mouse SERPIN gene superfamily

    Get PDF
    The serpin family comprises a structurally similar, yet functionally diverse, set of proteins. Named originally for their function as serine proteinase inhibitors, many of its members are not inhibitors but rather chaperones, involved in storage, transport, and other roles. Serpins are found in genomes of all kingdoms, with 36 human protein-coding genes and five pseudogenes. The mouse has 60 Serpin functional genes, many of which are orthologous to human SERPIN genes and some of which have expanded into multiple paralogous genes. Serpins are found in tissues throughout the body; whereas most are extracellular, there is a class of intracellular serpins. Serpins appear to have roles in inflammation, immune function, tumorigenesis, blood clotting, dementia, and cancer metastasis. Further characterization of these proteins will likely reveal potential biomarkers and therapeutic targets for disease. © 2013 Heit et al

    Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Get PDF
    In some mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as significant weight loss associated with lethal outcomes. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo-rho-dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR). Since TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, it was hypothesized that wasting syndrome is a result of to TCDD-induced dysregulation of genes involved in regulation of food-intake. As the hypothalamus is the central nervous systems' regulatory center for food-intake and energy balance. Therefore, mRNA abundances in hypothalamic tissue from two rat strains with widely differing sensitivities to TCDD-induced wasting syndrome: TCDD-sensitive Long-Evans rats and TCDD-resistant Han/Wistar rats, 23 h after exposure to TCDD (100 mu g/kg) or corn oil vehicle. TCDD exposure caused minimal transcriptional dysregulation in the hypothalamus, with only 6 genes significantly altered in Long-Evans rats and 15 genes in Han/Wistar rats. Two of the most dysregulated genes were Cyp1a1 and Nqo1, which are induced by TCDD across a wide range of tissues and are considered sensitive markers of TCDD exposure. The minimal response of the hypothalamic transcriptome to a lethal dose of TCDD at an early time-point suggests that the hypothalamus is not the predominant site of initial events leading to hypophagia and associated wasting. TCDD may affect feeding behaviour via events upstream or downstream of the hypothalamus, and further work is required to evaluate this at the level of individual hypothalamic nuclei and subregions. (C) 2014 The Authors. Published by Elsevier Ireland Ltd.Peer reviewe

    Functional Evaluation of Genetic and Environmental Regulators of P450 mRNA Levels

    Get PDF
    Variations in the activities of Cytochrome P450s are one of the major factors responsible for inter-individual differences in drug clearance rates, which may cause serious toxicity or inefficacy of therapeutic drugs. Various mRNA level is one of the key factors for different activity of the major P450 genes. Although both genetic and environmental regulators of P450 gene expression have been widely investigated, few studies have evaluated the functional importance of cis- and trans-regulatory factors and environmental factors in the modulation of inter-individual expression variations of the P450 genes. In this study, we measured the mRNA levels of seven major P450 genes (CYP1A1, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A5) in 96 liver biopsy samples from Chinese population. Both trans-acting (mRNA levels and non-synonymous SNPs of putative regulator genes) and cis-acting (gene copy number and functional SNPs) factors were investigated to identify the determinants of the expression variations of these seven P450 genes. We found that expression variations of most P450 genes, regulator genes and housekeeping genes were positively correlated at the mRNA level. After partial correlation analysis using ACTB and GAPDH expression to eliminate the effect of global regulators, a UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree was constructed to reveal the effects of specific regulation networks potentially masked by global regulators. Combined with the functional analysis of regulators, our results suggested that expression variation at the mRNA level was mediated by several factors in a gene-specific manner. Cis-acting genetic variants might play key roles in the expression variation of CYP2D6 and CYP3A5, environmental inducers might play key roles in CYP1A1 and CYP1A2 variation and global regulators might play key roles in CYP2C9 variation. In addition, the functions of regulators that play less important roles in controlling expression variation for each P450 gene were determined

    ZIP8 Zinc Transporter: Indispensable Role for Both Multiple-Organ Organogenesis and Hematopoiesis In Utero

    Get PDF
    Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn2+/(HCO3–)2 symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo) mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo) allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo) newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo) homozygotes from gestational day(GD)-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo) neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+) and Slc39a8(neo/neo) offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo) with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele); this cross generated viable Slc39a8(neo/neo)_BTZIP8-3(+/+) pups showing none of the above-mentioned congenital defects–proving Slc39a8(neo/neo) causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis

    AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish

    Get PDF
    The aryl hydrocarbon receptor (AHR) is well known for mediating the toxic effects of TCDD and has been a subject of intense research for over 30 years. Current investigations continue to uncover its endogenous and regulatory roles in a wide variety of cellular and molecular signaling processes. A zebrafish line with a mutation in ahr2 (ahr2hu3335), encoding the AHR paralogue responsible for mediating TCDD toxicity in zebrafish, was developed via Targeting Induced Local Lesions IN Genomes (TILLING) and predicted to express a non-functional AHR2 protein. We characterized AHR activity in the mutant line using TCDD and leflunomide as toxicological probes to investigate function, ligand binding and CYP1A induction patterns of paralogues AHR2, AHR1A and AHR1B. By evaluating TCDD-induced developmental toxicity, mRNA expression changes and CYP1A protein in the AHR2 mutant line, we determined that ahr2hu3335 zebrafish are functionally null. In silico modeling predicted differential binding of TCDD and leflunomide to the AHR paralogues. AHR1A is considered a non-functional pseudogene as it does not bind TCCD or mediate in vivo TCDD toxicity. Homology modeling, however, predicted a ligand binding conformation of AHR1A with leflunomide. AHR1A-dependent CYP1A immunohistochemical expression in the liver provided in vivo confirmation of the in silico docking studies. The ahr2hu3335 functional knockout line expands the experimental power of zebrafish to unravel the role of the AHR during development, as well as highlights potential activity of the other AHR paralogues in ligand-specific toxicological responses

    Cytochrome P450 1 genes in birds : evolutionary relationships and transcription profiles in chicken and Japanese quail embryos

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28257, doi:10.1371/journal.pone.0028257.Cytochrome P450 1 (CYP1) genes are biomarkers for aryl hydrocarbon receptor (AHR) agonists and may be involved in some of their toxic effects. CYP1s other than the CYP1As are poorly studied in birds. Here we characterize avian CYP1B and CYP1C genes and the expression of the identified CYP1 genes and AHR1, comparing basal and induced levels in chicken and quail embryos. We cloned cDNAs of chicken CYP1C1 and quail CYP1B1 and AHR1. CYP1Cs occur in several bird genomes, but we found no CYP1C gene in quail. The CYP1C genomic region is highly conserved among vertebrates. This region also shares some synteny with the CYP1B region, consistent with CYP1B and CYP1C genes deriving from duplication of a common ancestor gene. Real-time RT-PCR analyses revealed similar tissue distribution patterns for CYP1A4, CYP1A5, CYP1B1, and AHR1 mRNA in chicken and quail embryos, with the highest basal expression of the CYP1As in liver, and of CYP1B1 in eye, brain, and heart. Chicken CYP1C1 mRNA levels were appreciable in eye and heart but relatively low in other organs. Basal transcript levels of the CYP1As were higher in quail than in chicken, while CYP1B1 levels were similar in the two species. 3,3′,4,5,5′-Pentachlorobiphenyl induced all CYP1s in chicken; in quail a 1000-fold higher dose induced the CYP1As, but not CYP1B1. The apparent absence of CYP1C1 in quail, and weak expression and induction of CYP1C1 in chicken suggest that CYP1Cs have diminishing roles in tetrapods; similar tissue expression suggests that such roles may be met by CYP1B1. Tissue distribution of CYP1B and CYP1C transcripts in birds resembles that previously found in zebrafish, suggesting that these genes serve similar functions in diverse vertebrates. Determining CYP1 catalytic functions in different species should indicate the evolving roles of these duplicated genes in physiological and toxicological processes.Funding to MEJ and BB was from the Carl Tryggers Stiftelse and The Swedish Research Council Formas. Funding for BRW and JJS was from the United States National Institutes of Health (National Institute of Environmental Health Sciences), grants R01ES015912 and P42ES007381 to JJS
    • …
    corecore