1,652 research outputs found

    Stochastic compartmental analysis - Some applications and examples of estimation in a pulse labelled system

    Get PDF
    Stochastic compartmental analysis with examples of estimation in pulse labelled syste

    COMPARISONS OF TWO SYMMETRIC DENSITY FUNCTION SOLUTIONS OF APHID POPULATION GROWTH MODELS

    Get PDF
    Aphids are among the world\u27s most devastating crop pests, and their population trajectories in field crops are characterized by rapid boom and bust, under the influence of bottom up (host plant) and top down (natural enemy) forces. Theoretical development in aphid growth trajectory modeling has recently advanced quite significantly, and the logistic and normal probability density functions have been found to provide analytical solutions to mechanistic models of the aphid population growth dynamics. The logistic or hyperbolic secant squared model captures a growth trajectory shaped by negative feedback of the aphid population on itself, due to the accumulation of adverse effect on its host plant and the coupling with natural enemies (bottom up as well as top down effect), while the normal model can be derived on the basis of a relationship between intrinsic growth rate and the host plant phenology. In this paper, we fit both models to a large number of observed aphid population trajectors and explore model properties. It is shown that, despite the diverging mechanistic underpinnings of the model, the generated growth curves, as fitted to the data, are very similar, as are characteristics, such as the height of the peak, the time of the peak and the accumulated area under the curve. Both models are useful workhorses for capturing aphid growth dynamics, but fitting one or either model cannot be used as evidence for the underpinning mechanisms, as different underpinning mechanisms result in similar population dynamics

    Effects of miRNA-15 and miRNA-16 expression replacement in chronic lymphocytic leukemia : implication for therapy

    Get PDF
    This work was supported by: Associazione Italiana Ricerca sul Cancro (AIRC) Grant 5 x mille n.9980, (to M.F., F.M. A. N., P.T. and M.N.) ; AIRC I.G. n. 14326 (to M.F.), n.10136 and 16722 (A.N.), n.15426 (to F.F.). AIRC and Fondazione CaRiCal co-financed Multi Unit Regional Grant 2014 n.16695 (to F.M.). Italian Ministry of Health 5x1000 funds (to S.Z. and F.F). A.G R. was supported by Associazione Italiana contro le Leucemie-Linfomi-Mielomi (AIL) Cosenza - Fondazione Amelia Scorza (FAS). S.M. C.M., M.C., L.E., S.B. were supported by AIRC.Peer reviewedPostprin

    Dielectron Cross Section Measurements in Nucleus-Nucleus Reactions at 1.0 A GeV

    Full text link
    We present measured dielectron production cross sections for Ca+Ca, C+C, He+Ca, and d+Ca reactions at 1.0 A GeV. Statistical uncertainties and systematic effects are smaller than in previous DLS nucleus-nucleus data. For pair mass < 0.35 GeV/c2 : 1) the Ca+Ca cross section is larger than the previous DLS measurement and current model results, 2) the mass spectra suggest large contributions from pi0 and eta Dalitz decays, and 3) dsigma/dM is proportional to ApAt. For M > 0.5 GeV/c2 the Ca+Ca to C+C cross section ratio is significantly larger than the ratio of ApAt values.Comment: Submitted to Physical Review Letters. Further analysis information will be posted on our web pages -- http://macdls.lbl.gov Figure 1 has been redrawn to make more legible. Text modified to support redrawn figur

    Dilepton Production at SPS-energy Heavy Ion Collisions

    Get PDF
    The production of dileptons is studied within a hadronic transport model. We investigate the sensitivity of the dilepton spectra to the initial configuration of the hadronic phase in a ultrarelativistic heavy ion collision. Possible in medium correction due to the modifications of pions and the pion form factor in a hadronic gas are discussed.Comment: Dedicated to Gerry Brown in honor of the 32nd celebration of his 39th birthday. 31 pages Latex including 13 eps-figures, uses psfig.sty and epsf.st

    Local correlations in a strongly interacting 1D Bose gas

    Full text link
    We develop an analytical method for calculating local correlations in strongly interacting 1D Bose gases, based on the exactly solvable Lieb-Liniger model. The results are obtained at zero and finite temperatures. They describe the interaction-induced reduction of local many-body correlation functions and can be used for achieving and identifying the strong-coupling Tonks-Girardeau regime in experiments with cold Bose gases in the 1D regime.Comment: 8 pages, REVTeX4, published in the New Journal of Physic

    Inclusive Dielectron Cross Sections in p+p and p+d Interactions at Beam Energies from 1.04 to 4.88 GeV

    Full text link
    Measurements of dielectron production in p+p and p+d collisions with beam kinetic energies from 1.04 to 4.88 GeV are presented. The differential cross section is presented as a function of invariant pair mass, transverse momentum, and rapidity. The shapes of the mass spectra and their evolution with beam energy provide information about the relative importance of the various dielectron production mechanisms in this energy regime. The p+d to p+p ratio of the dielectron yield is also presented as a function of invariant pair mass, transverse momentum, and rapidity. The shapes of the transverse momentum and rapidity spectra from the p+d and p+p systems are found to be similar to one another for each of the beam energies studied. The beam energy dependence of the integrated cross sections is also presented.Comment: 15 pages and 16 figure

    Moment Closure - A Brief Review

    Full text link
    Moment closure methods appear in myriad scientific disciplines in the modelling of complex systems. The goal is to achieve a closed form of a large, usually even infinite, set of coupled differential (or difference) equations. Each equation describes the evolution of one "moment", a suitable coarse-grained quantity computable from the full state space. If the system is too large for analytical and/or numerical methods, then one aims to reduce it by finding a moment closure relation expressing "higher-order moments" in terms of "lower-order moments". In this brief review, we focus on highlighting how moment closure methods occur in different contexts. We also conjecture via a geometric explanation why it has been difficult to rigorously justify many moment closure approximations although they work very well in practice.Comment: short survey paper (max 20 pages) for a broad audience in mathematics, physics, chemistry and quantitative biolog
    • 

    corecore