General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

STOCHASTIC COMPARTMENTAL ANALYSIS: SCME APPLICATIONS
 AND EXAMPLES OF ESTIMATION IN A PULSE LABELLFID SYSTEM

by
J. H. Matis ${ }^{\text {l }}$, H. O. Hartley ${ }^{\text {l }}$, and W. C. Ellis ${ }^{2}$

${ }^{1}$ Institute of Statistics
 Texas A\&M University

Dept. of Animal Science
Texas A\&M University

Technical Report \#3
National Aeronautics and Space Administration
Research Grant NGR 44~001-097

STOCHASTIC COMPARTMENTAL ANALYSIS: STME APPLICATIONS AND EXAMPLES of ESTIMATION IN A PULSE LABELIEN SYSTEM

by

J. H. Matis, H. O. Hartley, and W. C. Ellis
Institute of Statistics and Department of Animal Science Texas A\&M University College Station, Texas 77840, U.S.A.

Summary

Compartmental analysis, though previously applied mainly to the biomedical sciences, provides a model pertinent to a wide variety of other areas of endeavor. This report illustrates the flexibility of application by citing models from diverse fields which are compartmental in nature.

The stochastic behavior of the above models is outlined and subsequently used to develop an estimation procedure. Two examples illustrate the application of the estimation technique. The first example, a simulation, demonstrates the weakness of ordinary least squares estimation, which is heretofore used, in stochastic compartmental models. A biological experiment forms the second example and it also confirms the above conclusion.

1. Introduction

As reported in a former paper (Matis and Hartley [1969]), several previous authors have recognized the need to incorporate stochastic considerations into compartmental analysis. The above paper contributes to that objective by introducing probabilistic behavior to the compart-
mental system most frequently encountered in the literature; i.e. a system that has
(1) a discrete sample space,
(2) steady state conditions,
(3) pulse labelling, and
(4) data available only on the passage of material to the system exterior.

The distribution theory of such a system is solved in general for m compartments ard an estimation procedure which utilizes that distribution theory is recommended. In short, the previous report contains a complete solution to the specific theoretical problem above.

The present paper addresses itself to one who would use the theory to analyze data; from the viewpoint of a user, it attempts to breathe life into the mathematical theory. Several diverse applications are sketched in section 2 to illustrate the breadth of possible usage of compartmental analysis. Section 3 kriefly reviews the theoretical results of the previous paper and extends the theory slightly along some lines of practical interest. These concepts are elucidated in section 4 by solving examples of both simulated and biological data. Also the examples clearly demonstrate the merits of the estimation procedure.

2. Some Applications

Sheppard [1962] Rescigno and Segre [1965], and Whipple and Hart [1963] provide comprehensive reviews of deterministic compartmental analysis and partial bibliographies of its previous use in the literature. As apparent in these reviews, compartmental analysis has application in many diverse areas of bio-medical science. This section will illustrate these traditional applications and also show the relevancy of the techninue to other areas of endeavor. It is imperative to recognize that the term "compartment", defined as a homogenous component of a larger system, has broader application in the present considerations than just defining physical location. "Compartments may have a real existence, and well-defined boundaries, as in the cells of plants or animals. More often the compartments are logical abstractions, and may stand for chemical compounds, states of valency, or other homogenous phases in a system." (Whitehouse and Putnam [1953] p. 291). Indeed the socio-economic example below evidences the great flexibility of application. And by no means should the following list be considered exhaustive, but rather as a sample of a much larger population of possibilities.

2.1 Pharmacolinetic application

Pharmacokinetics is one traditional subscriber of compartmental analysis. Riegelman, et al. [1968] persuasively argue the usefulness of a two-compartment model in drug studies. They propose that in the stuay of drug passage the human body may be modelled as in Figure 1 . The central

Figure 1
Human Body as a Compartmental System
tissue group and the peripheral tissue group form the first and second compartments of interest in the human body, respectively; the excreted and the metabolized drug is considered the system exterior. The compartmental problem in pharmacokinetics is the estimation of the $b_{j i}$ transition intensity coefficients, also salled the "turnover rate" parameters, from data on the passage of a tracer drug.

2.2 Animal science application

The passage of material through the gastroiatestinal tract of ruminants, e.g. cattle and sheep, constitutes a pertinent problem from animal science. Previous biological evidence suggests that compartmental analysis is applicable to the problem. The gastrointestinal tract may be conceptualized as a series of "vats" (see e.g. Hungate [1966], Chapter V) and indeed Blaxter, et al. [1956], by assuming deterministic behavior, have
obtained "good" fits of experimental data to a compartmental model. They suggest the compartments might be identified by Fifure 2.

Feces

Figure 2
Ruminant Gastrointestinal Traci as a Compartmental System

Animal nutritionists identify a great variety of materials for whicio tiie above modelling is useful; for example, one particular substance of interest consists of indigestible, plastic beads used as roughage substitute. Suppose $N(0)$ beads are introduced into tine runen at time 0 , and let $N(t)$ be tile random variable specifying the number of these beads remaining in the gastrointestinal tract ai time t. The compartmental problem in an animal science context is the estimation of the $b_{j i}$ tur over rates from time series data of the random variable $N(t)$.

2.3 Sociological application

Bartholomay [1967] discusses a sociological model representing organizational commitment. The model, as diagrammed in Figure 3, was developed by Herbst [1963] to explain the process which new initiates undergo before either leaving an organization or becoming permanently

Figure 3
Organizational Commitment Model as a Compartmental System
attached to it. Typically time series data is available only on the number of individuals leaving the organization. Herbst estimated the turnover rate parameters from such data for several different firms by using essentially deterministic procedures, and he obtained "extremely good" fits. The more realistic stochastic model remains to be considered.

2.4 Fublic Health Application

As a final example, consider the illness-death model used extensively in public health. The model as first proposed by Fix and Neyman [1951] is diagrammed by Figure 4. The model has subsequently been refined and most recently is discussed by Chiang [1968]. The general model of Chiang has s "illness states" and r "death states." "An illness state may be broadly defined to include the absence of illness (a haglth state), a physical impairment, a single specific disease or stage of disease, or any combination of diseases" (Chiang [1968], p. 151), and the death states are similarly defined terminal compartments.

An ultimate objective of such public health models is the estimation of the improvement in the overall survival rate incurred by the successful treatment of an illuess state. But a first objective is common to all previous examples, j.ee. the estimation of all transition rates from time series data.

A Particular Illness-Death Model
3. Cutline of Distribution Theor: and Estimation Procedure

Rather than consider the particular models in section 2 separately, this section outlines the distribution theory and estination procedure of a ceneral m-compartment system wiere each compartuent is connected to eacil other and to the system exterior. It follows that a general system has m^{2} parameters and tiat the models discussed its section 2 are special cases of this general system.

Let $N_{i}(0)$ be the known number of labelled units introduced into compartment i at time 0 , and let $N_{i}(t)$ be a random variable specifying the nuraber of units in compartme:at i at time t. Let $b_{j i}$ be the transition intensity or "turnover rate" from compartment i to compartment j, where $b_{o i}$ represents exit from compartment i. Then by definition, $b_{j i} \Delta t$ is the probability that a particular unit migrates from conpar tment i to compartment j in the time interval Δt. Figure 5 represents a general $m=2$ compartment system with $m^{2}=4 \mathrm{~b}_{\mathrm{ji}}$ parameters.

Fisure 5
General Two Compartnent System

The following definitions are now necessary to present the probability theory. Define an $m \times$ matrix $\beta=\left(B_{i j}\right)$ suci: that for $i \neq j$ the element $B_{i j}$ is the negative of the transition intensity to j fron i, and the diagonal element $B_{i i}$ is the sum of all inte sities leaving compartnent i. One

Let the roots of β be $\alpha_{i}, i=1, \ldots, m$; and assume tiat tios complex numbers α_{i} are distinct. Corresponding to each α_{i}, a latent m-vector, say F^{i}, may be found where the first element is either 0 or is standardized to $l_{\text {. }}$ Let $F=\left(f_{i j}\right)$ ve the matrix of these latent vectors, i.e.

$$
F=\left[F^{I}, F^{2}, \ldots, F^{m}\right]=\left[\begin{array}{cccc}
f_{11} & f_{12} & \ldots & f_{1 n} \\
f_{21} & f_{22} & \ldots & f_{2 m} \\
\vdots & \vdots & & \vdots \\
f_{m l} & f_{m 2} & & f_{m n}
\end{array}\right] .
$$

The determinant of F is denoted $\mid F_{i}$, and the cofactor of $f_{i j}$ by $F_{i j}$ c Then the parameter of interest, $p_{i:!}(t)$, is defined as

$$
p_{i k}(t)=\frac{1}{|F|} \sum_{j=1}^{m} f_{i j} F_{k j} e^{-\alpha_{j} t}
$$

The following result, which is proven in our previous report, may now be presented.
Result 1: Let $\Gamma_{i}(t)$, where $\Gamma_{i}{ }^{T}(t)=\left[\gamma_{i 1}(t), \gamma_{i 2}(t), \ldots, \gamma_{i m}(t)\right]$ for $i=1,2, \ldots, m$, be distributed as a multinomial distribution with parameters $N_{i}(0), p_{i l}(t), p_{i 2}(t), \ldots, p_{i m}(t) ;$ i.e. $\operatorname{Prob}\left[\gamma_{i 1}(t), \gamma_{i 2}(t), \ldots, \gamma_{i m}(t)\right]=$

Also let the vector $\Delta(t)$ be defined by $\Delta^{T}(t)=\left[N_{1}(t), N_{2}(t), \ldots, N_{m}(t)\right]$. If the compartmental system receives tracer only at $t=0$, then $\Delta(t)$ is distributed as the sum of the m independent $\Gamma_{i}(t)$, i.e.

$$
\Delta(t)=\sum_{i=1}^{m} \Gamma_{i}(t)
$$

A physical interpretation may be attached to the $\Gamma_{i}(t)$ vectors. As apparent from its $N_{i}(0)$ parameter, the $\Gamma_{i}(t)$ vector characterizes the dispersion throughout the compartmeats of the $N_{i}(0)$ units which originated ia compartment i. Logically the behavior of these $N_{i}(0)$ units is independent of the, say, $N_{i}^{\prime}(0)$ units originating in compartment $i^{\prime}(\neq i)$. Indeed, result 1 estajlishes this assertion and tims tice rows of Figure 6 are independent.

	Compartment at time t	Vector Notation
1	$\gamma_{1 I}(t) \cdot \gamma_{1 j}(t) \cdot \bullet \gamma_{1 m}(t)$	$\Gamma_{1}(t)$
Compartment at time 0	$\underset{\gamma_{i l}}{:}(t) \cdot \stackrel{\gamma_{i j}}{:}(t) \cdot \dot{\gamma_{i m}}(t)$	$\stackrel{:}{\Gamma_{i}}(t)$
m	$\dot{y}_{m l}(t) \ldots \dot{y}_{m j}(t) \ldots \dot{y}_{m m}(t)$	$\stackrel{\square}{\Gamma_{m}}(t)$
Total	$N_{1}(t) \quad N_{j}(t) \quad N_{m}(t)$	$\Delta(t)$

Figure 6
Two-way Layout of $\gamma_{i j}(t)$ numbers

However the total (over all m origins) number of uinits in compartment $j, N_{j}(t)$, is the $j^{\text {th }}$ marginal of $\Delta(t)$ and is not independent of the other marginals. In other words, tize columns of Figure 6 are dependent. If u and v are different compartments, the covariance of $\gamma_{i u}$ and $\gamma_{i v}$ is determined by properties of the multinomial distribution to be

$$
\operatorname{Cov}\left[\gamma_{i u}(t), \gamma_{i v}(t)\right]=-H_{i}(0) p_{i v}(t) p_{i u}(t)
$$

Similarly, since $N_{j}(t)=\sum_{i=1}^{m} Y_{i j}$ and by virtue of tine independency of the $\Gamma_{i}(t)$, it follows that

$$
\operatorname{Cov}\left[N_{u}(t), N_{v}(t)\right]=-\sum_{i=1}^{m} N_{i}(0) p_{i v}(t) p_{i u}(t)
$$

The distribution within tie coupartments is thus identified for any particular time. However recall tiat the data consist of the total number of units in the system at various times, i.e. $N_{T}\left(t_{i}\right)$ for
$i=1, \ldots, z$; hence the first and second moments of the $N_{T}\left(t_{i}\right)$ time series are presently required. Result 2 solves tinis problem and may be proven using Result 1.

Result 2: Let

$$
\begin{equation*}
a_{s}(t)=\sum_{k=1}^{n} p_{s k}(t) \tag{2}
\end{equation*}
$$

Then tiie mean value function of $N_{T}(t)$, say $\mu(t)$, is

$$
\begin{equation*}
\mu(t)=\sum_{i=1}^{m} N_{i}(0) a_{i}(t) \tag{3}
\end{equation*}
$$

and the covariance kernel of $N_{T}\left(t_{a}\right)$ and $N_{T}\left(t_{b}\right)$ where $t_{b} \geq t_{a}$, say $o_{a b}$, is

$$
\begin{equation*}
\sigma_{a b}=\sum_{i=1}^{m} N_{i}(0) a_{i}\left(t_{b}\right)\left[1-a_{i}\left(t_{a}\right)\right] \tag{4}
\end{equation*}
$$

Result 2 contains the "regression" function, $\mu(t)$, and the $z \times z$ variance-covariance matrix $\Sigma=\left(\sigma_{i j}\right)$. These may be used to estimate the (at most) $m^{2} b_{j i}$ parameters by an iterative non-linear least squares procedure. The modified Gauss-Newton algorithm of Hartley (1961) is extended in Result 3 to minimize the generalized sum of squared deviations, $e^{T} \Sigma^{-1} e$, by the Aitken generalized least squares theorem (see e.g. Goldberger [1964], p. 233). One then has tine following:

Result 3: Jet Σ be the $i^{\text {th }}$ estimate of Σ with $\Sigma=I$. Let Ω be the vector of parameters $\left[b_{01}, b_{21}, \ldots, b_{m-1, m}\right.$], and let 1Ω be the 1 th estimate of Ω. Then Ω may be estimated as follows:
(1) Holding ${ }_{0}$ fixed, iterate for the parameter estimates I^{Ω} by the modified Gauss-Newton algorithm.
(2) Substitute the $]_{1} \Omega\left({ }_{k} \Omega\right)$ estimates into the matrix β and
(a) find its latent roots, α_{i}, and vectors, F^{i},
(b) using (a), find the $p_{i j}(t)$ and $a_{i}(t)$ parameters from equations (1) and (2) respectively, and
(c) using (b), find the new estimated variance-covariance matrix ${ }_{1} \Sigma\left({ }_{\mathbf{k}}{ }^{\Sigma}\right)$ according to (4).
(3) Iterate for new parameter estimates $2^{\Omega\left({ }_{k+1} \Omega\right) \text { using } I_{1} \Sigma\left({ }_{k} \Sigma\right) .}$ in the Aitken formula with ${ }_{1} \Omega\left({ }_{k} \Omega\right)$ as the initial values.
(4) Repeat steps 2 and 3 obtaining i_{i} and i^{Ω} estimates successively until the process converges.

A full account of the two stage procedure of Result 3, as well as the preceding results, is contained in the previous report (Matis and Hartley [1969]). An additional result is useful in practice. Although Result 2 identifies the variance-covariance matrix Σ the ultimate requirement is the information matrix Σ^{-1}. Fortunately subsequent usage requires the inversion only for given parameter values, hence the inversion need only be done mumerically on e computer. Yet an explicit solution for Σ^{-1} would obviously save both accuracy and computer time.

Indeed, an explicit inverse of Σ is available for the class of problems most frequently encountered. Typically in a pulse labelled experiment, just one compartment, say the $k^{\text {th }}$, is initially labelled. The prevalence of the one compartment introduction is partially due both to the simplirity of initiating the experiment as well as the frequent physical inaccessibility of multiple compartments.

In the special case, then, where only compartment k is pulsed, the element of Σ in equation (4) reduces to

$$
\sigma_{a b}=N_{k}(0) a_{k}\left(t_{b}\right)\left[1-a_{k}\left(t_{a}\right)\right] \text { for } 1 \leq a, b \leq z \text {. }
$$

The elements of the information matrix may be derived from the system of equations $\Sigma \Sigma^{-1}=I$. The following result is thus derived.

Result 4: Let the information matrix be $\Sigma^{-1}=\left(\sigma^{a b}\right)$. If only the $k^{\text {th }}$ compartment is labelled, the elements of Σ^{-1} are

$$
\begin{aligned}
& N_{k}(0) \sigma^{b b}=\frac{a_{k}\left(t_{b-1}\right)-a_{k}\left(t_{b+1}\right)}{\left[a_{k}\left(t_{b-1}\right)-a_{k}\left(t_{b}\right)\right]\left[a_{k}\left(t_{b}\right)-a_{k}\left(t_{b+1}\right)\right]} \text { for } 1 \leq b \leq z \\
& \text { where } a_{k}\left(t_{0}\right) \equiv 1 \text { and } a_{k}\left(t_{z+1}\right) \equiv 0, \\
& N_{k}(0) \sigma^{b+1, b}=N_{k}(0) \sigma^{b, b+1}=\frac{-1}{a_{k}\left(t_{b}\right)-a_{k}\left(t_{b+1}\right)} \quad \text { for } 1 \leq b \leq z-1,
\end{aligned}
$$

and

$$
o^{a b}=0 \quad \text { for } \quad|a-b|>1
$$

The above solution may be verified by the $\Sigma \Sigma^{-1}$ product. Note that since $z^{2}-3 z+2$ elements are 0 , the result contributes facility in handling in addition to accuracy.

4. Examples of Estimation Procedures

The estimation procedure is illustrated in this section with two examples. One is a simulation with known parameter values and the other consists of data from the applicaition described in section 2.2.

4.1 Example of Simulated Data

Consider first simulated data from the compartmental system represented by Figure 7. Data from this system were generated by choosing parameter values $b_{21}=0.125$ and $b_{02}=0.250$, and initializing $N_{1}(0)=4000$

Figure 7
Two Compartment Model of Simulation and Gastrointestinal Tract

Abstract

and $N_{2}(0)=0$. Negative exponential sojourn times were generated to produce a realization of the stochastic process. Table 1 contains this particular realization at $z=40$ time points defined by $t_{i}=1$.

In order to estimate the parameters from these 40 data, one proceeds to find the μ matrix of the compartmental model. The β matrix corresponding to Figure 7 is

$$
\beta=\left[\begin{array}{cc}
b_{21} & -b_{21} \\
0 & b_{02}
\end{array}\right]
$$

Simple matrix algebra reveals that

$$
\begin{aligned}
& \alpha_{1}=b_{21} \quad \alpha_{2}=b_{02} \\
& f_{11}=f_{12}=F_{22}=-F_{21}=1 \\
& f_{21}=F_{12}=0 \\
& f_{22}=f_{11}=|F|=\frac{b_{21}-b_{02}}{b_{21}}
\end{aligned}
$$

Substituting the above into (1) and (2), it follows that

$$
a(t)=\left[b_{02}-b_{21}\right]^{-1}\left[b_{02} e^{-b_{21} t}-b_{21} e^{-b_{02} t}\right]
$$

from whence the mean and covariance kernel of the random variable $N_{T}(t)$ are given by

$$
\begin{aligned}
\mu_{T}\left(t_{a}\right) & =4000 a\left(t_{a}\right) \\
\sigma_{a b} & =4000 a\left(t_{r}\right)\left[1-a\left(t_{a}\right)\right] .
\end{aligned}
$$

Assuming now that the parameters are unlnown, we judiciously select initial parameter estimates, $0^{b} 21=0.125$ and $0_{0}^{b}=0.250$, and iterate for the least squares estimates (step 1 of the estimation procedure). The derived estimates, $I^{b} 21$ and $l^{b}{ }_{02}$, are then substituted into the variance-covariance matrix (step 2) from whence subsequent estimates, $2^{b} 21$ and $2^{b} 02$, are again obtained by Gauss-Newton iteration (step 3). The procedure is repeated until these estimates converge.

Table 2 summarizes the results of the estimation procedure. Note the very rapid convergence of the i^{b} estimates. The procedure also provides an indicator of goodness-ofmfit. Assuming the model to be true, the random variable s^{2} is distributed as λ^{2} / n; hence $s^{2}=1.063$ indicates an acceptable fit.

Another noteworthy fact is the difference in the standard deviations. As previously onserved, the Aitken estimates are BLJE for a linear model with known covariance matrix. In the present simulation, witit the parameters and hence the covariance matrix determined, the standard deviations of the Aitien estimates are determined by

$$
\Sigma_{M}=\left[G^{T} \Sigma^{-1} G_{G}\right]^{-1}
$$

to be $\sigma_{b_{21}}=.00488$ and $\sigma_{b_{02}}=.01806$. As expected, any other unbiased estimates have a greater variance; in particular the variability of the ordinary least squares (OLS) estimates, $\tilde{\Omega}$, is calculated from

$$
\sum_{\tilde{M}}=\left[G_{G}^{T}\right]^{-1} G_{2 G} T_{G}\left[G_{G}\right]^{-1}
$$

to be $\sigma_{b_{21}}^{\sim}=.00528$ and $\sigma_{b_{02}}^{\sim}=.02407$. Note from 'rable 2 that the recommended estimation procedure estimates the standard deviations of
TABLE 2

Iteration	$i^{b_{21} \pm \text { estimated std. dev. }}$	$i^{b} 02 \pm$ estimated std. dev.	s^{2}
0	0.12500	0.25000	
1	$0.12547 \pm .00092$	$0.24454 \pm .00312$	
2	$0.12561 \pm .00527$	$0.24419 \pm .01851$	1.063
3	$0.12561 \pm .00527$	$0.24419 \pm .01851$	1.063

the parameters to be $S_{b_{21}}=.00527$ and $S_{b_{02}}=.01851$ which are close to the above $\sigma_{b_{21}}$ and $\sigma_{b_{02}}$. However the OLS estimates of the standard deviations, by failing to recognize the interdependence of the observations, use the improper law

$$
\xi \pi=\sigma^{2}\left[G^{T} G\right]^{-1}
$$

and thereby seriously underestimate the variability. Iteration 1 of Table 2 gives these improper OLS estimates as $S_{\tilde{b}_{e 1}}=.00092$ and $S_{\tilde{b}_{02}}=.00312$. In summary, experimenters who use ordinary least squares estimation in stociastic compartmental problems are lead to believe such estimates are exceptionally significant when in fact suci estimates may be showil inferior to those of the recomeaded iterative estimation.

4.2 Animal Science Application

As a second example, Table 3 contains data on the passage of beads through the cistrointestinal tract of a sheep. Similar experiments have been conducted by Blaxter, et al. [1956] whose findings are wellareceived among animal scientists and, indeed, constitute the state-of-the-art in the above mentioned modelling. At time $t^{\prime}=0,4000$ indigestible plastic beads were placed into the rumen of the sheep. The sheep was fed every six hours and her feces were also collected then and analyzed for bead passage. The transformed argument t of Table 2 represents the argument t' in days less a four day fixed transit time or "time delay," i.e. $t=t^{\prime}-4$. The four day length of the period was immediately determined from the data since only a few (possibly extraneous) beads iad been recovered prior to that time.
TABLE 3
-21-

4.2.1 Tio Compartment model

Assuming initially the model of Figure 7 for the data, the mean value function and compartmental covariance kernel, say Σ_{c}, are given above in section l.1. The complete variance-covariance matrix of $N_{T}(t)$, however, includes two other kernels in addition to the compartmental kernel; one is due to the "end-period" error recognized by Blaxter, et al., and the other is due to some unfortunate mastication of the beads by the sheep. Subsequent experimentation will be designed to practically eliminate both of these latter errors. Hence their form is not presented in this report although, for the sake of completeness, the formulations of the end-period error, Σ_{e}, and of the mastication error, Σ_{m}, are available in Matis [1970]. For the present data then, the complete variance-covariance matrix, Σ_{T} is the sum of the three components which are assumed independent, i.e.

$$
\Sigma_{T}=\Sigma_{c}+\Sigma_{e}+\Sigma_{m}
$$

The estimation procedure of Result 3 is now employed using the matrix Σ_{T} in the place of the previous Σ.

Table 4 lists the cycles of the procedure. The fit is not exceptional $\left(s^{2}=1.6\right)$ but it is within reason for biological data. Inasmuch as current methodology uses ordinary least squares estimates, the fact that the final estimates differ considerably from the ous estimates is noteworthy. The OLS estimates are 0.0290 and 0.6580 while the terminal estimates of the above procedure are approximately (by extrapolation) 0.0234 and 3.07: in another light one parameter estimate decreased by
π HTAG4

Iteration	${ }_{i}{ }^{\mathrm{b}} 21 \pm$ estimated std. dev.	$i^{\mathrm{b}} 22 \pm$ estimated std. dev.	s^{2}
$\mathbf{1}$	$.0290 \pm .0005$		
2	$.0218 \pm .0015$	0.6580 ± 0.0654	
3	$.0239 \pm .0018$	5.5656 ± 1.8699	1.523
4	$.0231 \pm .0017$	2.1988 ± 0.9871	1.708
5	$.0235 \pm .0017$	3.6266 ± 1.6228	1.635
6	$.0234 \pm .0017$	2.8129 ± 1.2981	1.623

19\% and the other increased by an incredible 370\%. In the event one used the compartmental covariance kernel Σ_{c} alone, the final parameter estimates $\hat{\mathrm{b}}_{21}=0.0244$ and $\hat{\mathrm{b}}_{02}=2.552$ are close to the above terminal estimates but again far apart from the OIS estimates.

Also, as in the simulated data example, the estimated standard deviations are deceptively low in OIS estimatic.. The coefficients of variation for the parameters in OLS are 0.017 and 0.099 compared to 0.073 and 0.456 in the recommended procedure.

4.2.2 Three compartment model

The three compartment system of Figure 8 was considered as an

alternative to the previous two compartment model. Its β matrix is

$$
p=\left[\begin{array}{ccc}
b_{21} & -b_{21} & 0 \\
0 & b_{32} & -b_{32} \\
0 & 0 & b_{03}
\end{array}\right]
$$

and matrix algebra identifies the mean value function and compartmental covariance kernel as

$$
\begin{aligned}
\mu_{T}(t) & =4000 a(t) \\
\sigma_{a b} & =4000 a\left(t_{b}\right)\left[I-a\left(t_{a}\right)\right]
\end{aligned}
$$

where now

$$
a(t)=\left[z_{1}+z_{2}+z_{3}\right]^{-1}\left[z_{1} e^{-b} 21 t+z_{2} e^{-b} 32^{t}+z_{3} e^{-b} 03^{t}\right]
$$

with

$$
\begin{aligned}
& z_{1}=b_{32} b_{03}\left(b_{32}-b_{03}\right) \\
& z_{2}=b_{21} b_{03}\left(b_{03}-b_{21}\right) \\
& z_{3}=b_{21} b_{32}\left(b_{21}-b_{32}\right)
\end{aligned}
$$

This regression model was fit to the data of Table 3 by ordinary least squares with resulting parameter estimates

$$
\begin{aligned}
& \hat{b}_{21}=0.0294 \pm .0005 \\
& \hat{b}_{32}=0.6265 \pm .0673 \\
& \hat{b}_{03}=16,384 \cdot \pm 3.401 \times 10^{7}
\end{aligned}
$$

and with no appreciable reduction in the error mean square. Clearly the astronomical turnover of the third compartment indicates the absence of such compartment; the model was thus rejected in favor of the previous two compartment system.
-26-

Acknowledgement

We are indebted to our colleague, Dr. W. B. Smith, for his interest over the years in the present work. His continued willingness to discuss the problems has sustained our interest.

Bibliography

Bartholomew, D. J. [1967]. Stochastic Models for Social Processes. Wiley, New York.

Blaxter, K. L., Graham, N. W., and Wainman, F. W. [1956]. Some Observations on the Digestibility of Food by Sheep, and on Related Problems. Brit. J. Nutr. 10, 69-91.

Chiang, C. L. [1968]. Introduction to Stochastic Processes in Biostatistics. Wiley, New York.

Fix, E. and Neyman, J. [1951]. A Simple Stochastic Model of Recovery, Relapse, Death, and Loss of Patients. Human Biology 23, 205-41.

Goldberger, A. S. [1964]. Econometric Theory. Wiley, New York.
Hartley, H. O. [1961]. The Modified Gaussmewton Method for the Fitting of Non-Linear Regression Functions by Least Squares. Technometrics 3, 269-80.

Herbst, P. G. [1963]. Organizational Cormitment: A Decision Process Model. Acta Sociologica 7, 34-45.

Hungate, R. E. [1966]. The Rumen and Its Microbes. Academic Press, New York.

Matis, J. H. [1970]. Unpubliched Dissertation. Institute of Statistics, Texas A8M University.

Matis, J. H. and Hartley, H. O. [1969]. Stcchastic Compartmental Analysis: Model and Least Squares Estimation from Time Series Data. NASA Tech. Report \#2, Institute of Statistics, Texas A\&M Universīty.

Rescigno, A. and Segre, G. [1965]. Drug and Tracer Kinetics. Blaisdell, Waltham, Mass.

Riegelman, S., Loo, J. C. K., and Rowland, M. [1968]. Shortcomings in Pharmacokinetic Analysis by Conceiving the Body to Exhibit Properties of a Single Compartment. J. Fharm. Sc. 57, 117-23.
Sheppard, C. W. [1962]. Easic Principles of the Tracer Method. Wiley, New York.

Whipple, H. E. and Hart, H. E. (eds.), [1963]. Multi-Compartment Analysis of Tracer Experiments. Ann. N. Y. Acad. of Sciences 108, 1-338.

Whitehouse, ${ }^{\text {W. J. and Putnam, J. L. [1953]. Radioactive Isotopes. }}$ Clarendon Press, Oxford, England.

