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Summary

Compartmental analysis, though previously applied mainly to the bio-

medical sciences, provides a model pertinent to a wide variety of other

areas of endeavor. This report illustrates the flexibility of application

by citing models from diverse fields which are compartmental in nature.

The stochastic behavior of the above models is outlined and subse-

quently used to develop an estimation procedure. Two examples illustrate

the application of the estimation technique. The first example, a simu-

lation, demonstrates the weakness of ordinary least squares Estimation,

which is heretofore used, in stochastic compartmental models. A biologi-

cal experiment forms the second example and it also confirms the above

conclusion.

1. Introduction

As reported in a former paper (Matis and Hartley [19693), several

previous authors have recognized the need to incorporate stochastic

considerations into compartmental analysis. The above paper contributes

to that objective by introducing probabilistic behavior to the compart-
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mental system most frequently encountered in the literature; i.e. a

system that has

(1) a discrete sample space,

(2) steady state conditions,

(3) pulse labelling, and

(4) data available only on the passage
of material to the system exterior.

The distribution theory of such a system is solved in general for m

compartments and an estimation procedure which utilizes that distribution

theory is recommended. In short, the previous report contains a complete

solution to the specific theoretical problem above.

The present paper addresses itself to one who would use the theory

to analyze data; from the viewpoint of a user, it attempts to breathe

life into the mathematical theory. Several diverse applications are

sketched in section 2 to illustrate the breadth of possible usage of

compartmental analysis. Section 3 t riefly reviews the theoretical

results of the previous paper and extends the theory slightly along

some lines of practical interest. These concepts are elucidated in

section 4 by solving examples of both simulated and biological data.

Also the examples clearly demonstrate the merits of the estimation

procedure.
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2. Some Applications

Sheppard [1962; Rescigno and Segre 119651, and Whipple and Hart [1963]

provide comprehensive reviews of deterministic compartmental analysis and

partial bibliographies of its previous use in the literature. As apparent

in these reviews, compartmental analysis has application in many diverse

areas of bio-medical science. This section will illustrate these tradi-

tional applications and also show the relevancy of the techniv.,e to other

areas of endeavor. It is imperative to recognize that the term "compart•.

ment", defined as a homogenous component of a larger system, has broader

application in the present considerations than just defining physical

location. "Compartments may have a real existence, and well-defined

boundaries, as in the cells of plants or animals. More often the compart-

ments are logical abstractions, and may stand for chemical compounds,

states of valency, or other homogenous phases in a system." (Whitehouse

and Putnam 119533 p. 291)• Indeed the socio-economic example below

evidences the great flexibility of application. And by no means should

the following list be considered exhaustive, but rather as a sample of a

inuch larger population of possibilities.

2.1 Pharmacohinetic application

Pharmacokinetics is one traditioial, subscriber of compartmental

analysis. Riegelman, et al. [1968] persuasively argue the usefulness of

a two-compartment model in drug studies. They propose that in the study

of drug passage tine human body may be modelled as in Figure 1. The central



-4-

b21

Central Tissue
	

Peripheral Tissue

Group
	

Group

b12

b 0
r

Metabolism and Excretion

Figure 1

Human Body as a Compartmental System

tissue group and the peripheral tissue group form the first and second

compartments of interest in the human body, respectively; the excreted

a:id the metabolized drug is considered the systeri exterior. The compart-

mental problem in pharmacokinetics is the estimation of the bpi transition

intensity coefficients, also called the "turnover rate" parameters, from

data on the passage of a tracer drug.

2.2 Animal science application

The passage of material through the gastrointestinal tract of rumi-

nants, e.g. cattle and sheep, co_istitutes a pertinent problem from animal

scie,:ce. Previous biological evidence suggests that compartmental analysis

is applicable to the problem. The gastrointestinal tract may be conceptu-

alized as a series of "vats" (see e.g. Hungate [1966], Chapter V) and

indeed Blaxter, et al. [1956], by assuming deterministic behavior, have
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obtained "good" fits of experimental data to a compartmental model. They

suggest the compartments might be identified by ri;,ure 2.

Rumen b21	 Abomasum b32 	 Duodenum

I bo3
Feces

Figure 2

Ruminant Gastrointestinal Traci as a Compartmental System

Animal nutritionists identify a great variety of materials for wLicn

t,ie above modelling -Is useful; for example, one particular substance of

interest consists of indigestible, plastic beads used as roughage substi-

tute. Suppose N(0) beads are i!itroduced into the rw:hea at time 0, and let

N(t) be the random variable specifying the number of these beads remaiiiiiigr

in the gastrointestinal tract at time t. The compartmental problem in an

animal science context is idie estimation of the b.. tur.iover rates from

-time series data of the random variable N(t).
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2.3 Sociological application

Bartholomay [1967] discusses a sociological model representing

organizational commitment. The model ., as diagrammed in Figure 3, was

developed by Herbst [1963] to explain the process which new initiates

undergo before either leaving an organization or becoming permanently

b21

Temporarily

/	
Committed

^b
32

bo2

Permanently

Committed

Undecided

Ib31

Decision Made

to Leave
i

bo3

Left

Figure 3

Organizational Commitment Model as a Compartmental System

attached to it. Typically time series data is available only on the

number of individuals leaving the organization. Herbst estimated the

turnover rate parameters from such data for several different firms by

using essentially deterministic procedures, and he obtained "extremely

good" fits. The more realistic stochastic model remains to be considered.
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2.4 Public Health Application

As a final example, consider the illness-death model used

extensively in public health. The model as first proposed by Fix and

Neyman [1951] is diagrammed by Figure 4. The model has subsequently

been refined and most recently is discussed by Chiang [1 0,68]. The

general model of Chiang has s "illness states" and r "death states."

"An illness state may be broadly defined to include the absence of

illness (a health state), a physical impairment, a single specific

disease or stage of disease, or any combination of diseases" (Chiang

[1968], p. 151) .. and the death states are similarly defined terminal

compartments.

An ultimate objective of such public health models is the estima-

tion of the improvement in U e overall survival rate incurred by the

successful treatment of an illness state. But a first objective is

common to all previous examples, i.e. the estimation of all transition

rates from time series data.

Diagnosed as	
r

Suffering
	

Recovery

from Cancer
	

b12

b31
	

b42

Death from
Deat} from	

Other Causes
Cancer	

or Lost

L	
Figure 4

A Particular Illness-Death Model
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3. Outline of Distribution Theor-, and Estimatioli Procedure

Rather than consider the particular models in section 2 separately,

this section outlines the distribution theory and estimation procedure

of a general m-compartment system whhere each compartment is connected

to eacii other and to the system exterior. It follows that a general

system has m2 parameters and that the models discussed ire section 2 are
special cases of this general system,

Let Ni (0) be the known number of labelled units introduced into

compartment i at time 0, and let N i (t) be a random variable specifying

the number of units in compartme.it i at time t. Let b..
J1 

be the transi-

tion intensity or "turnover rate" from compartment i to compartment j,

where boi represents exit from compartment i, Then by definition, b.iGt
J

is the probability that a particular unit migrates from compartment i

to compartment j in the time interval Gt. Figure 5 represents a general

m = 2 compartment system with m2 = !a bji parameters.

)^ Q1

N1(t)

	 b21 `	 r12(t)

b^
	

• e

I/ b 0	 1 bog

System Exterior

Figure 5

General Two Comparti.ient System

Q2



The following definitions are now necessary to present the

probability theory. Define an m x in matrix 0 _ (B ij ) such: that for

i # 3 the element B ij is the negative of the transition intensity to j

fron is and the diagonal element B ii is the sum of all inte l sities leaving

compartmeat i. One

III

E b jl	
-b 

21	 -b ml
i no
JA

m	 •

G	
-b12	 E bJ2	 -bm2II	

ii
V

•	 J^2	 ••

•	 m-1

blm	 -b21n . . . . -EObJmJ

Let the roots of 0 be cy i = 1, ..•, m; and assume t;iat tr» complex

numbers ui are distinct. Correspondi:g to each cri , a lateA m-vector,

say Fl , may be found where the first element is either 0 or is standardized

to 1. Let F = (fi3 ) be the matrix of these latent vectors, i.e.

r
F	 ^Fl , F2 , •.., Fm]	 f11 f12 ... flra

f21 f22 ... f 2

ifml fm2	 raai •

The determiiwt of F is denoted (FI, and the cofactoz of f ij by Fij.L

Then the parameter of interest. v_,_(t), is defined as
1:.
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M	 -a t
p (t) _= Ef,. F e j
ik	 IF I 

jl 
i^ kj

The following result, which is proven in our previous report, may

now be presented.

Result 1: Let ri (t), where riT(t) = [Y
il(t), yi2(t), ..., Yi(t)] for

i = 1, 2, ..., M. be distributed as a multinomial distribution with

parameters Ni(0)2 Pil (t ), Pi2 (t)2 ..., Pin,,( t )s' i.e.

m

mm	 Ni (0)- E Yi

	

Ni(0): H pij YljCl - E P.	 j=

	

j=1	 j=1

	

M	 m
n Y..: CN . (0) - E Y..

j=1 l^ 1	 j=l 1^

Also let the vector A(t) be defined by AT(t) = [111(t) 2 N2(t), ..., Nm(t)].

If tiie corVartamental system receives tracer only at t = 0, then A(t) is

distributed as the sum of the m independent ri(t), i.e.

M
a(t) - E ri(t) .

11

A physical interpretation may be attached to the r i(t) vectors.

As apparent from its Ni(0) parameter, the ri(t) vector characterizes the

dispersion throughout the compaxtme;its of the N1(0) units which originated

in cmq)artment i. Logically the behavior of these N,
i
(0) units is inde-

pendent of the, say, Ni(0) units originating in compartment i'(^ i).

Indeed, result 1 esta '3lishes this assertion and taus t..e rows of Figure 6

are independent,

(1)

Prob [Yil(t ),, Y12(t)-, ...-' Yim(t )] =

s
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Compartment

at time t vector
1 j	 .	 .	 . m Notation

1	 v M Y1j(t) • • YY ( t ) rl(t)
Compartment •

at time 0	 1	 Yil(t) Yij(t)	 . . Yim(t ) ri(t)

m `^(L) YMP) . . Ya'M m(t)

Total	 Nl(t) Nj(t) %(t) A(t)

Figure 6
Two-way Layout of Yi j ( t) numbers

However the total (over all m origins) number of units in compart-

ment j, Nj (t), is the jth 
marginal 

of u(t) and is not independent of the

other marginals. In other words, tt:e columns of Figure 6 are dependent.

If u and v are different compartments, the covariance of °qu, and Yiv is

determ-Lied by properties of the multi,:omial distribution to be

CovNiu(t), Yiv (t )] = -Ili(0)piv(t)piu(t).

m

Similarly, since N, (t) = E Y. , and by virtue of the i.idepe*ldency of the
J	 i=11J

ri (t), it follows that

M
Cov[ u(t ).9 Nv( t )J = - EN i(0 )piv(t )pj' ( t) .

i=1

The distribution within ti:e compartments is thus identified for any

particular time. However recall t,Lat the data consist of the total

number of units in the system at various times, i.e. N T(ti ) for
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i = 1, ..., z; hence the first and second moments of the NT(ti ) time

series are presently required. Result 2 solves this problem and may be

proven using Result 1,

Result 2: Let

m

as (t) 
= kP 

sl. (t) 	(2)

Then tine mean value function of NT(t), say 9(t).,

m

µ(t) =

	

	 1(0)ai(t),	 (3)
i=1

and the covariance kernel of NT(ta) and NT (tb ) where tb.> ta, say oab, is

m

oab = E Ni (0 )ai ( tb ) [1 - ai(ta)]
i=1

(^► )

Result 2 contains the "regression" function, µ(t), and the z x z

variance-covariance matrix F = (aij ). These may be used to estimate the

(at most) m2 bpi parameters by an iterative non-linear least squares

procedure. The modified Gauss-Newton algorithm of Hartley (1961) is

extended in Result 3 to minimize the generalized sum of squared devia-

ltions, 4 -F s, by the Aitken generalized least squares theorem (see e.g.

Goldberger [196 1+], p. 233). One then has the following:

Result 3s Let i E be the ith estimate of F with o = I. Let P_ be the

vector of parameters [bol' b21 , ..•, 
bm-1 s

 m]P and let iQ be the ith

estimate of Q. Then A may be estimated as follows:
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(1) Holding of fixed, iterate for the parameter estimates 1Q by

the modified Gauss-Newton algorithm.

(2) Substitute the 
1Q(kQ) 

estimates into the matrix and

(a) find its latent roots, qi , and vectors, Fi,

(b) using (a), find the pij (t) and ai (t) parameters from

equations (1) and (2) respectively, and

(c) using (b), find the new estimated variance-covariance

matrix 1E(kr) according to (4).

(3) Iterate for new parameter estimates 2Q(k+l0) using 17-(k 
E)

in the Aitken formula with 1C2(k01') as the initial values.

(4) Repeat steps 2 and 3 obtaining iF and 10 estimates successively

until the process converges.

A full account of the two stage procedure of Result 3, as well as

the preceding results, is contained in the previous report (Matis and

Hartley [19693). An additional result is useful in practice. Although

Result 2 identifies the variance-covariance matrix £ the ultimate

requirement is the information matrix fl . Fortunately subsequent usage

requires the inversion only for given parameter values, hence the inversion

need only be done numerically on a computer. Yet an explicit solution for

fl would obviously save both accuracy and computer time.

Indeed, an explicit inverse of £ is available for the class of

problems most frequently encountered. Typically in a pulse labelled

experiment, just one compartment, say the kth, is initially labelled.

The prevalence of the one compartment introduction is partially due both

to the simpli;,.ity of initiating the experiment as veil as the frequent

physical inaccessibility of multiple compartments.



-14-

In the special case, then, where only compartment k is pulsed, the

element of E in equation (4) reduces to

oab = Nk(0) ak(tb)[1 - ak(ta)] for 1 < a, b < z .

The elements of the information matrix may be derived from the system of

equations E f1 = I. .The following result is thus derived.

Result 4: Let the information matrix be t l = (04'). If only the kth

compartment is labelled, the elements of E 1 are

N k(0)
	 =	 ak(th-1) - ak(tb+1-)	 for 1 < b < z

 [ (	 )-	 ( )][a ( )-a(	 )]e'k hh-1	 a'k 
tb	

k ^	 k ^+l

where ak(to) = 1 and 
ak(tz+l ) - 0,

Nk(0)Qb+l,b = Nk(0)ab,b+l _

	

	 -1	 for 1 Ic b '- z-1

ak(tb ) - ak(tb+l)

and

Qab = 0
	 for +a - b j > 1 .

The above solution may be verified by the E 9 1 product. Note that

since z2 - 3z + 2 elements are 0, the result contributes facility in

handling in addition to accuracy.
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4. Examples of Estimation Procedures

The estimation procedure is illustrated in this section with two

examples. One is a simulation with known parameter values and the other

consists of data from the application described in section 2.2.

4.1 Example of Simulated Data

Consider first simulated data from the compartmental system repre-

sented by Figure 7. Data from this system were generated by choosing

parameter values b21 = 0.125 and b02 = 0.250, and initializing Nl(0) = 4000

b21

Compartment 1
	

Compartment 2

Ib02

System Exterior

Figure 7

Two Compartment Model of Simulation and Gastrointestinal Tract

and N2(0) = 0. Negative exponential sojourn times were generated to

produce a realization of the stochastic process. Table 1 contains this

particular realization at z = 40 time points defined by t i = i.
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In order to estimate the parameters from these 40 data, one proceeds

to find the N matrix of the compartmental model. The a matrix corres-

ponding to Figure 7 is

b21 -b21

0	
b02

Simple matrix algebra reveals that

al = b21	 a2 = b02

f	 fll=12=F22=-F21=1

f21=F12=0

f2'?
	 - JFJ =b^22 °11 -	 b

21

Substituting the above into (1) and (2), it follows that

a( t ) = [b02 - b
21 ]-1 [b02e 

b21t - b21e b02t],

from whence the mean and covariance kernel of the random variable NT(t)

are given by

'AT(ta) = 4000 a(ta)

aab - 4000 a(tt ) Cl - a(ta)] .
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Assuming now that the parameters are unlaiown, we judiciously select

initial parameter estimates, 0b21 = 0,125 and 0b02 = 0,250, and iterate

for the least squares estimates (step 1 of the estimation procedure).

The derived estimates, 1b21 and 
1b02, 

are then substituted into the

variance-covariance matrix (step 2) from whence subseque:lt estimates,

2b21 and 
2b02 , are again obtained by Gauss-Newton iteration (step 3).

The procedure is repeated until these estimates converge.

Table 2 summarizes the results of the estimation procedure, Note

the very rapid convergence of the ib estimates. The procedure also

provides an indicator of goodness-of-fit. Assuming the model to be true,

the random variable s2 is distributed as - /n; hence s 2 = 1.063 indicates

an acceptable fit.

Another noteworthy fact is the difference in the standard deviations.

As previously onserved, the Aitken estimates are BLUE for a linear model

with known covariance matrix. In the present simulation, wit. ! the param-

eters and hence the covariance matrix determined, the standard deviations

of the Ait_--en estimates are determined by

£M = [GTE Grl

to be ab = .00488 and ab	.01806. As expected, any other unbiased
21	 O<

estimates have a greater variance; in particular the variability of the

ordinary least squares (OLS) estimates, 5, is calculated from

W = [GTGI-1GT MEG TGI-1

to be ab21 = .00528 and ab
02
 = 002407. Note from 'fable 2 that the

recommended estimation procedure estimates the standard deviations of
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the parameters to be S 	 a .00527 and S 	 = .01851 which are close to
21	 02

the above o'b and 
'7b. 

However the OLS estimates of the standard
21	 02

deviations, by failing to recognize the interdependence of the observe-

tions, use the improper law

RZ = a2[GTG]-1

and thereby seriously underestimate the variability. Iteration 1 of

Table 2 rives these improper OLS estimates as Sbr = .00092 and
el

89 _ .00312. In summary, experimenters who use ordinary least squares
02

estimation in stochastic compartmental problems are lead to believe such

estimates are exceptionally significant when in fact suci estimates may

be shown inferior to those of the recorw :e:ided iterative estimation.

4.2 Animal Science Application

As a second example, Table 3 contains data on the passage of beads

thrcug►i the &%strointestinal tract of a sheep. Similar experiments have

been conducted by Blaxter, et al. [1956] whose findings are well-received

among animal scientists and, indeed, constitute the state-of-tile-art ^z

the above mentioned modelling. At time t' = 0, 4000 indigestible plastic

beads were placed into the rumen of the sheep. The sheep was fed every

six hours and 'aer feces were also collected then and analyzed for bead

passage. The transformed argument t of Table 2 represents the argument

t' in days less a four day fixed transit time or "time delay," i.e.

t s t' - 4. Me four day length of the period was immediately determined

f:°.rom the data since only a few (possibly extraneous) beads had been

recovered prior to tint time.
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4.2.i Ttfo Compartment model

Assuming initially the mode] of Fimnre 7 for the data, the mean

value function and compartmental covariance kernel, say £c , are given

above in section 11 .1. The complete variance-covariance matrix of NT(t),

however, includes two other kernels in addition to the compartmental

kernel; one is dine to the " end-period" erro .r recognized by Blaxter, et

al., and the other is due to some unfortunate mastication of the beads

by the sheep. Subsequent experimentation will be designed to practically

eliminate both of these latter errors. Hence their form is not presented

in this report although, for the sake of completeness, the formulations

of the end-period error, re-' 	 of the mastication error, F^, are

available in Matis [1970]. For the present data then, the complete

variance-covariance matrix, £,r is the sum of the three components which

are assumed independent, i.e.

£T = c+ e+ Z.

The estimation procedure of Result 3 is now employed using the matrix £T

in the place of the previous E.

Table 4 lists the cycles of the procedure. The fit is not exceptional

(s2 = 1.6) but it is within reason for biological data. Inasmuch as

current methodology uses ordinary least squares estimates, the fact that

the final estimates differ considerably from the OLS estimates is note-

worthy. The OLS estimates are 0.0290 and 0 .6580 while the terminal

estimates of the above procedure are approximately (by extrapolation)

0.0234 and 3 .07; in another light one parameter estimate decreased by
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19% and the other increased by an incredible 370°%. In the event one used

the compartmental covariance kernel c
 alone, the final parameter esti-

mates b21 = 0.0244 and b02 = 2.552 are close to the above terminal

estimates but again far apart from the OLS estimates.

Also, as in the simulated data example, the estimated standard devia-

tions are deceptively low in OLS estimatica. The coefficients of variation

for the parameters in OLS are 0.017 and 0.099 compared to 0.073 and 0.456

in the recomended procedure.

4.2.2 Three compartment model

The three compartment system of Figure 8 was considered as an

	

b21	 b 32

Compartment 1	 Impartment 2 --%, Compartment 3

b03

System Exterior

Figure 8

Three Compartment Model of Gastrointestinal Tract

alternative to the previous two compartment model. Its 0 matrix is

b21 
-b21	

0

	

0 = 0	 b32 -b32

	

0	 0	
b03
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and matrix algebra identifies the mean value function and compartmental

covariance kernel as

µT (t) - 4000 a(t)

aab = 400o a(tb )[1 - a(ta)]

where now

b t	 -b t	 -b t
a(t) _ [zl + z2 + z3]-1[zle 21 + z2e 32 + z 

3 
e 03 ]

with

z  = b32b03 (b32 - b03)

z2 = b2P03(bo3 - b21)

z3 = b21b32 (b21 - b32 ) .

This regression model was fit to the data of Table 3 by ordinary

least squares with resulting parameter estimates

821 = 0,0294 ,t .0005

b32 = 0.6265 ± .0673

b03 = 16 9 384. + 3.4ol x lo7

and with no appreciable reduction in the error mean square. Clearly

the astronomical turnover of the third compartment indicates the absence

of such compartment; the model was thus rejected in favor of the previous

two compartment system.
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