21 research outputs found

    Autoantibodies to BRAF, a new family of autoantibodies associated with rheumatoid arthritis

    Get PDF
    International audienceBRAF (v raf murine sarcoma viral oncogene homologue B1) is a serine-threonine kinase involved in the mitogen-activated protein kinase (MAPK) signalling pathway, known to be implicated in the production of pro-inflammatory cytokines.We have observed that sera from rheumatoid arthritis (RA) patients recognize the BRAF's catalytic domain, which encompasses amino acids 416 to 766. Here, we identify peptide targets of anti-BRAF autoantibodies and test whether anti-BRAF autoantibodies may interfere with BRAF kinase activity.METHODS:Anti-BRAF autoantibodies were detected by ELISA (enzyme-linked immunosorbent assay) in the serum of RA patients and controls, using 40 overlapping 20mer peptides encompassing the catalytic domain of BRAF as immunosorbents. To test whether autoantibodies to BRAF influence BRAF kinase activity, we developed an in vitro phosphorylation assay of MEK1 (mitogen extracellular regulated kinase), a major BRAF substrate. MEK1 phosphorylation by BRAF was tested in the presence of purified anti-BRAF autoantibodies from RA patients or control antibody.RESULTS:We found that one BRAF peptide, P25 (656 to 675), is specifically recognized by autoantibodies from RA patients. Of interest, anti-P25 autoantibodies are detected in 21% of anti-CCP (cyclic citrullinated peptides) negative RA patients. Anti-BRAF autoantibodies activate the in vitro phosphorylation of MEK1 mediated by BRAF.CONCLUSIONS:Anti-BRAF autoantibodies from RA patients preferentially recognize one BRAF peptide: P25. Autoantibody responses to P25 are detected in 21% of anti-CCP negative RA patients. Most anti-BRAF autoantibodies activate BRAF kinase activity

    Bead arrays for antibody and complement profiling reveal joint contribution of antibody isotypes to C3 deposition

    Get PDF
    The development of antigen arrays has provided researchers with great tools to identify reactivities against self or foreign antigens from body fluids. Yet, these approaches mostly do not address antibody isotypes and their effector functions even though these are key points for a more detailed understanding of disease processes. Here, we present a bead array-based assay for a multiplexed determination of antigen-specific antibody levels in parallel with their properties for complement activation. We measured the deposition of C3 fragments from serum samples to reflect the degree of complement activation via all three complement activation pathways. We utilized the assay on a bead array containing native and citrullinated peptide antigens to investigate the levels of IgG, IgM and IgA autoantibodies along with their complement activating properties in serum samples of 41 rheumatoid arthritis patients and 40 controls. Our analysis revealed significantly higher IgG reactivity against the citrullinated fibrinogen β and filaggrin peptides as well as an IgA reactivity that was exclusive for citrullinated fibrinogen β peptide and C3 deposition in rheumatoid arthritis patients. In addition, we characterized the humoral immune response against the viral EBNA-1 antigen to demonstrate the applicability of this assay beyond autoimmune conditions. We observed that particular buffer compositions were demanded for separate measurement of antibody reactivity and complement activation, as detection of antigen-antibody complexes appeared to be masked due to C3 deposition. We also found that rheumatoid factors of IgM isotype altered C3 deposition and introduced false-positive reactivities against EBNA-1 antigen. In conclusion, the presented bead-based assay setup can be utilized to profile antibody reactivities and immune-complex induced complement activation in a high-throughput manner and could facilitate the understanding and diagnosis of several diseases where complement activation plays role in the pathomechanism

    Tertiary Lymphoid Organs in Rheumatoid Arthritis.

    Get PDF
    Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease. RA mainly affects the joints, with inflammation of the synovial membrane, characterized by hyperplasia, neo-angiogenesis, and immune cell infiltration that drives local inflammation and, if untreated, can lead to joint destruction and disability. In parallel to the well-known clinical heterogeneity, the underlying synovitis can also be significantly heterogeneous. In particular, in about 40% of patients with RA, synovitis is characterized by a dense lymphocytic infiltrate that can acquire the features of fully functional tertiary lymphoid organs (TLO). These structures amplify autoimmunity and inflammation locally associated with worse prognosis and potential implications for treatment response. Here, we will review the current knowledge on TLO in RA, with a focus on their pathogenetic and clinical relevance

    In the rheumatoid pannus, anti-filaggrin autoantibodies are produced by local plasma cells and constitute a higher proportion of IgG than in synovial fluid and serum

    No full text
    IgG anti-filaggrin autoantibodies (AFA) are the most specific serological markers of rheumatoid arthritis (RA). They include the so-called ‘anti-keratin antibodies’ (AKA) and anti-perinuclear factor (APF), and recognize human epidermal filaggrin and other (pro)filaggrin-related proteins of various epithelial tissues. In this study we demonstrate that AFA are produced in rheumatoid synovial joints. In 31 RA patients, AFA levels were assayed at equal IgG concentrations in paired synovial fluids (SF) and sera. AFA titre-like values determined by indirect immunofluorescence and immunoblotting and AFA concentrations determined by ELISA were non-significantly different in serum and SF, clearly indicating that AFA are not concentrated in SF. In contrast, we demonstrated that AFA are enriched in RA synovial membranes, since the ELISA-determined AFA in low ionic-strength extracts of synovial tissue from four RA patients represented a 7·5-fold higher proportion of total IgG than in paired sera. When small synovial tissue explants from RA patients were cultured for a period of 5 weeks, the profile of IgG and AFA released in the culture supernatants was first consistent with passive diffusion of the tissue-infiltrating IgG (including AFA) over the first day of culture, then with a de novo synthesis of IgG and AFA. Therefore, AFA-secreting plasma cells are present in the synovial tissue of RA patients and AFA can represent a significant proportion of the IgG secreted within the rheumatoid pannus

    Antibodies to carbamylated alpha-enolase epitopes in rheumatoid arthritis also bind citrullinated epitopes and are largely indistinct from anti-citrullinated protein antibodies

    No full text
    Background: In addition to anti-citrullinated protein antibodies (ACPAs), antibodies targeting carbamylated (i.e., homocitrullinated) proteins (anti-CarP antibodies) have been described in rheumatoid arthritis (RA). However, the extent to which anti-CarP antibodies are truly distinct from ACPA remains unclear, and few studies have focused on specific autoantigens. Here, we examine cross-reactivity between ACPA and anti-CarP antibodies, in the context of the candidate autoantigen a-enolase. Methods: Cross-reactivity was examined by immunoblotting of citrullinated and carbamylated proteins using purified ACPA; and by peptide absorption experiments, using the citrullinated alpha-enolase peptide CEP-1 and a homocitrulline-containing version (carb-CEP-1) in ELISA. The population-based case-control cohort EIRA (n = 2836 RA; 373 controls) was screened for reactivity with CEP-1 and carb-CEP-1, using the ISAC multiplex array. Associations between anti-CarP antibodies, smoking and genetic risk factors were analysed using unconditional logistic regression models. Differences in antibody levels were investigated using the Mann-Whitney U test. Results: Affinity-purified ACPA was found to bind carbamylated proteins and homocitrulline-containing peptides, demonstrating definitive cross-reactivity between ACPA and anti-CarP antibodies. Anti-carb-CEP-1 reactivity in EIRA was almost exclusively confined to the CEP-1-positive subset, and this group of RA patients (21 %) displayed a particularly strong ACPA response with marked epitope spreading. The small RA subset (3 %) with homocitrulline reactivity in the absence of citrulline reactivity did not associate with smoking or risk genes, and importantly had significantly lower anti-carb-CEP-1 antibody levels. Conclusion: Our data presented herein cast doubt on the specificity of anti-CarP antibodies in RA, which we posit may be a subset of cross-reactive ACPA
    corecore