98 research outputs found

    A Two-Threshold Model for Scaling Laws of Non-Interacting Snow Avalanches

    Full text link
    The sizes of snow slab failure that trigger snow avalanches are power-law distributed. Such a power-law probability distribution function has also been proposed to characterize different landslide types. In order to understand this scaling for gravity driven systems, we introduce a two-threshold 2-d cellular automaton, in which failure occurs irreversibly. Taking snow slab avalanches as a model system, we find that the sizes of the largest avalanches just preceeding the lattice system breakdown are power law distributed. By tuning the maximum value of the ratio of the two failure thresholds our model reproduces the range of power law exponents observed for land-, rock- or snow avalanches. We suggest this control parameter represents the material cohesion anisotropy.Comment: accepted PR

    Quantum frequency estimation with trapped ions and atoms

    Full text link
    We discuss strategies for quantum enhanced estimation of atomic transition frequencies with ions stored in Paul traps or neutral atoms trapped in optical lattices. We show that only marginal quantum improvements can be achieved using standard Ramsey interferometry in the presence of collective dephasing, which is the major source of noise in relevant experimental setups. We therefore analyze methods based on decoherence free subspaces and prove that quantum enhancement can readily be achieved even in the case of significantly imperfect state preparation and faulty detections.Comment: 5 pages + 6 pages appendices; published versio

    Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates

    Full text link
    Squeezed states, a special kind of entangled states, are known as a useful resource for quantum metrology. In interferometric sensors they allow to overcome the "classical" projection noise limit stemming from the independent nature of the individual photons or atoms within the interferometer. Motivated by the potential impact on metrology as wells as by fundamental questions in the context of entanglement, a lot of theoretical and experimental effort has been made to study squeezed states. The first squeezed states useful for quantum enhanced metrology have been proposed and generated in quantum optics, where the squeezed variables are the coherences of the light field. In this tutorial we focus on spin squeezing in atomic systems. We give an introduction to its concepts and discuss its generation in Bose-Einstein condensates. We discuss in detail the experimental requirements necessary for the generation and direct detection of coherent spin squeezing. Two exemplary experiments demonstrating adiabatically prepared spin squeezing based on motional degrees of freedom and diabatically realized spin squeezing based on internal hyperfine degrees of freedom are discussed.Comment: Phd tutorial, 23 pages, 17 figure

    Spatial fluctuations in transient creep deformation

    Full text link
    We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by Digital Image Correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power-law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases - the spatially averaged creep rate obeys the Andrade law ϵtt0.7\epsilon_t \sim t^{-0.7}, while the time dependence of the spatial fluctuations of the local creep rates is given by Δϵtt0.5\Delta \epsilon_t \sim t^{-0.5}. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2dd Linear Interface Model or the quenched Edwards-Wilkinson equation.Comment: 27 pages, 18 figure

    Spectroscopic investigations of a Ti:Tm:LiNbO3 waveguide for photon-echo quantum memory

    Full text link
    We report the fabrication and characterization of a Ti4+^{4+}:Tm3+^{3+}:LiNbO3_3 optical waveguide in view of photon-echo quantum memory applications. In particular, we investigated room- and cryogenic-temperature properties via absorption, spectral hole burning, photon echo, and Stark spectroscopy. We found radiative lifetimes of 82 μ\mus and 2.4 ms for the 3^3H4_4 and 3^3F4_4 levels, respectively, and a 44% branching ratio from the 3^3H4_{4} to the 3^3F4_4 level. We also measured an optical coherence time of 1.6 μ\mus for the 3^3H63_6\leftrightarrow{}^3H4_4, 795 nm wavelength transition, and investigated the limitation of spectral diffusion to spectral hole burning. Upon application of magnetic fields of a few hundred Gauss, we observed persistent spectral holes with lifetimes up to seconds. Furthermore, we measured a linear Stark shift of 25 kHz\cdotcm/V. Our results are promising for integrated, electro-optical, waveguide quantum memory for photons.Comment: 11 pages, 14 figure

    PAM-4 and duobinary direct modulation of a hybrid InP/SOI DFB laser for 40 Gb/s transmission over 2 km single mode fiber

    Get PDF
    We demonstrate 40 Gb/s PAM-4 and Duobinary direct modulation of a heterogeneously integrated InP on SOI DFB laser. Transmission measurement was performed using a 2 km NZ-DSF with a PRBS 2(15) and 1.5 V-pp swing voltage

    Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms

    Full text link
    About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative uncertainty of 150 parts per million (the combined standard uncertainty is given in parentheses). Our value differs by 1.5 combined standard deviations from the current recommended value of the Committee on Data for Science and Technology. A conceptually different experiment such as ours helps to identify the systematic errors that have proved elusive in previous experiments, thus improving the confidence in the value of G. There is no definitive relationship between G and the other fundamental constants, and there is no theoretical prediction for its value, against which to test experimental results. Improving the precision with which we know G has not only a pure metrological interest, but is also important because of the key role that G has in theories of gravitation, cosmology, particle physics and astrophysics and in geophysical models.Comment: 3 figures, 1 tabl

    Anomalous yielding in the complex metallic alloy Al13Co4

    Get PDF
    The single crystal deformation behaviour of orthorhombic Al13Co4 hasbeen studied below the brittle-ductile transition temperature observedin bulk material from room temperature to 600 degrees C, usingindentation, microcompression and transmission electron microscopy. Atroom temperature, slip occurred most easily by dislocation motion on the(0 0 1)[0 1 0] slip system, as observed in the ductile regime at hightemperatures. However, as the temperature was increased towards 600degrees C, the slip pattern changed to one consisting of linear defectsrunning perpendicular to the loading axis. Serrated flow was observed atall temperatures, although at 600 degrees C the magnitude of theserrations decreased. Anomalous yielding behaviour was also observedabove 226 degrees C, where both the yield and the 2\% flow stressincreased with temperature, almost doubling between 226 and 600 degreesC. It has been suggested that this might arise due to the increasingstability of orthorhombic Al13Co4 with respect to the monoclinic formwith increasing temperature. This is shown to be consistent with thetheoretical predictions that exist

    Space Division Multiplexing in Optical Fibres

    Full text link
    Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fibre. In this search, researchers have explored (and close to maximally exploited) every available degree of freedom, and even commercial systems now utilize multiplexing in time, wavelength, polarization, and phase to speed more information through the fibre infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibres can easily support hundreds of spatial modes, but today's commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals.Comment: to appear in Nature Photonic
    corecore