275 research outputs found

    Staging of High-Gradient Wakefield Accelerators

    Full text link
    Accelerating particles to high energies with a high-gradient wakefield accelerator may require use of multiple stages. Coupling beams from one stage to another can be difficult due to high divergence and non-negligible energy spreads. We review the challenges, technical requirements and currently proposed methods for solving the staging problem.Comment: 24 pages, contribution to the CAS - CERN Accelerator School: High Gradient Wakefield Accelerators, 11-22 March 2019, Sesimbra, Portuga

    Matching small β\beta functions using centroid jitter and two beam position monitors

    Full text link
    Matching to small beta functions is required to preserve emittance in plasma accelerators. The plasma wake provides strong focusing fields, which typically require beta functions on the mm-scale, comparable to those found in the final focusing of a linear collider. Such beams can be time consuming to experimentally produce and diagnose. We present a simple, fast, and noninvasive method to measure Twiss parameters in a linac using two beam position monitors only, relying on the similarity of the beam phase space and the jitter phase space. By benchmarking against conventional quadrupole scans, the viability of this technique was experimentally demonstrated at the FLASHForward plasma-accelerator facility.Comment: 8 pages, 7 figure

    Changes in humpback whale song structure and complexity reveal a rapid evolution on a feeding ground in Northern Norway

    Get PDF
    Singing behaviour by male humpback whales (Megaptera novaeangliae) has traditionally been associated with low-latitude breeding grounds. However, in recent years, this vocal behaviour has been increasingly reported outside these areas. All singers in a given population sing the same version of a song and this song is continually evolving over time with modifications on different levels within the song structure. Tracing changes in whale song will help to undercover the drivers underlying this vocal display and contribute to the understanding of animal culture and its evolution. To determine the progressive changes in songs found on a subarctic feeding ground and migratory stopover, a detailed analysis of humpback whale song recordings from Northern Norway was conducted. Passive acoustic data from the Lofoten-VesterĂĄlen Ocean Observatory (LoVe), collected using a bottom-moored underwater hydrophone, were used from January - April 2018 and January 2019. Two measures of the song structure were examined: (1) sequence similarities using the Levenshtein distance and (2) song complexity using a principal component analysis (PCA). In total, 21 distinct themes were identified which presented highly directional, structural changes over time. Two themes from 2018 reoccurred in 2019, whereas all other themes in 2019 appeared to be evolved versions of 2018 themes. All songs grouped into three general clusters, reflecting the rapid evolution over the study period. With all sampled animals singing the same version of the song, this might indicate that the singers are either from the same breeding population or that song learning occurred before the study period. Song complexity appeared to follow the trend of song progression; songs became more complex as they evolved over the months in 2018 and decreased in complexity between the years, returning to a more simplified song in 2019. The results confirm that humpback whale song exhibits a rapid progression on a shared subarctic feeding ground, with strong potential for song exchange and opportunities for cultural transmission between populations in the North Atlantic

    Humpback Whale (Megaptera novaeangliae) Song on a Subarctic Feeding Ground

    Get PDF
    Male humpback whales (Megaptera novaeangliae) are known to produce long complex sequences of structured vocalizations called song. Singing behavior has traditionally been associated with low latitude breeding grounds but is increasingly reported outside these areas. This study provides the first report of humpback whale songs in the subarctic waters of Northern Norway using a long-term bottom-moored hydrophone. Data processed included the months January–June 2018 and December 2018–January 2019. Out of 189 days with recordings, humpback whale singing was heard on 79 days. Singing was first detected beginning of January 2018 with a peak in February and was heard until mid-April. No singing activity was found during the summer months and was heard again in December 2018, continuing over January 2019. A total of 131 song sessions, including 35 full sessions, were identified throughout the study period. The longest and shortest complete sessions lasted 815 and 13 min, respectively. The results confirm that singing can be heard over several months in winter and spring on a high latitude feeding ground. This provides additional evidence to the growing literature that singing is not an explicit behavior confined to low latitude breeding grounds. The peak of song occurrence in February appears to coincide with the reproductive cycle of humpback whales. Finally, this study indicates that song occurrence on a subarctic feeding ground likely aids the cultural transmission for the North Atlantic humpback whale population.publishedVersio

    Positron Acceleration in Plasma Wakefields

    Full text link
    Plasma acceleration has emerged as a promising technology for future particle accelerators, particularly linear colliders. Significant progress has been made in recent decades toward high-efficiency and high-quality acceleration of electrons in plasmas. However, this progress does not generalize to acceleration of positrons, as plasmas are inherently charge asymmetric. Here, we present a comprehensive review of historical and current efforts to accelerate positrons using plasma wakefields. Proposed schemes that aim to increase the energy efficiency and beam quality are summarised and quantitatively compared. A dimensionless metric that scales with the luminosity-per-beam power is introduced, indicating that positron-acceleration schemes are currently below the ultimate requirement for colliders. The primary issue is electron motion; the high mobility of plasma electrons compared to plasma ions, which leads to non-uniform accelerating and focusing fields that degrade the beam quality of the positron bunch, particularly for high efficiency acceleration. Finally, we discuss possible mitigation strategies and directions for future research.Comment: 24 pages (30 pages with references), 22 figure

    Changes in humpback whale song structure and complexity reveal a rapid evolution on a feeding ground in Northern Norway

    Get PDF
    Singing behaviour by male humpback whales (Megaptera novaeangliae) has traditionally been associated with low-latitude breeding grounds. However, in recent years, this vocal behaviour has been increasingly reported outside these areas. All singers in a given population sing the same version of a song and this song is continually evolving over time with modifications on different levels within the song structure. Tracing changes in whale song will help to undercover the drivers underlying this vocal display and contribute to the understanding of animal culture and its evolution. To determine the progressive changes in songs found on a subarctic feeding ground and migratory stopover, a detailed analysis of humpback whale song recordings from Northern Norway was conducted. Passive acoustic data from the Lofoten-VesterĂĄlen Ocean Observatory (LoVe), collected using a bottom-moored underwater hydrophone, were used from January - April 2018 and January 2019. Two measures of the song structure were examined: (1) sequence similarities using the Levenshtein distance and (2) song complexity using a principal component analysis (PCA). In total, 21 distinct themes were identified which presented highly directional, structural changes over time. Two themes from 2018 reoccurred in 2019, whereas all other themes in 2019 appeared to be evolved versions of 2018 themes. All songs grouped into three general clusters, reflecting the rapid evolution over the study period. With all sampled animals singing the same version of the song, this might indicate that the singers are either from the same breeding population or that song learning occurred before the study period. Song complexity appeared to follow the trend of song progression; songs became more complex as they evolved over the months in 2018 and decreased in complexity between the years, returning to a more simplified song in 2019. The results confirm that humpback whale song exhibits a rapid progression on a shared subarctic feeding ground, with strong potential for song exchange and opportunities for cultural transmission between populations in the North Atlantic.publishedVersio

    Overexploitation, Recovery, and Warming of the Barents Sea Ecosystem During 1950–2013

    Get PDF
    The Barents Sea (BS) is a high-latitude shelf ecosystem with important fisheries, high and historically variable harvesting pressure, and ongoing high variability in climatic conditions. To quantify carbon flow pathways and assess if changes in harvesting intensity and climate variability have affected the BS ecosystem, we modeled the ecosystem for the period 1950–2013 using a highly trophically resolved mass-balanced food web model (Ecopath with Ecosim). Ecosim models were fitted to time series of biomasses and catches, and were forced by environmental variables and fisheries mortality. The effects on ecosystem dynamics by the drivers fishing mortality, primary production proxies related to open-water area and capelin-larvae mortality proxy, were evaluated. During the period 1970–1990, the ecosystem was in a phase of overexploitation with low top-predators’ biomasses and some trophic cascade effects and increases in prey stocks. Despite heavy exploitation of some groups, the basic ecosystem structure seems to have been preserved. After 1990, when the harvesting pressure was relaxed, most exploited boreal groups recovered with increased biomass, well-captured by the fitted Ecosim model. These biomass increases were likely driven by an increase in primary production resulting from warming and a decrease in ice-coverage. During the warm period that started about 1995, some unexploited Arctic groups decreased whereas krill and jellyfish groups increased. Only the latter trend was successfully predicted by the Ecosim model. The krill flow pathway was identified as especially important as it supplied both medium and high trophic level compartments, and this pathway became even more important after ca. 2000. The modeling results revealed complex interplay between fishery and variability of lower trophic level groups that differs between the boreal and arctic functional groups and has importance for ecosystem management

    Intra-season variations in distribution and abundance of humpback whales in the West Antarctic Peninsula using cruise vessels as opportunistic platforms

    Get PDF
    Fine-scale knowledge of spatiotemporal dynamics in cetacean distribution and abundance throughout the Western Antarctic Peninsula (WAP) is sparse yet essential for effective ecosystem-based management (EBM). Cruise vessels were used as platforms of opportunity to collect data on the distribution and abundance of humpback whales (Megaptera novaeangliae) during the austral summer of 2019/2020 in a region that is also important for the Antarctic krill (Euphausia superba) fishery, to assess potential spatiotemporal interactions for future use in EBM. Data were analyzed using traditional design-based line transect methodology and spatial density surface hurdle models fitted using a set of physical environmental covariates to estimate the abundance and distribution of whales in the area, and to describe their temporal dynamics. Our results indicate a rapid increase in humpback whale abundance in the Bransfield and Gerlache Straits through December, reaching a stable abundance by mid-January. The distribution of humpback whales appeared to change from a patchier distribution in the northern Gerlache Strait to a significantly concentrated presence in the central Gerlache and southern Bransfield Straits, followed by a subsequent dispersion throughout the area. Abundance estimates agreed well with previous literature, increasing from approximately 7000 individuals in 2000 to a peak of 19,107 in 2020. Based on these estimates, we project a total krill consumption of between 1.4 and 3.7 million tons based on traditional and contemporary literature on per capita krill consumption of whales, respectively. When taken in the context of krill fishery catch data in the study area, we conclude that there is minimal spatiotemporal overlap between humpback whales and fishery activity during our study period of November-January. However, there is potential for significant interaction between the two later in the feeding season, but cetacean survey efforts need to be extended into late season in order to fully characterize this potential overlap.Publisher PDFPeer reviewe

    Niches of marine mammals in the European Arctic

    Get PDF
    The Arctic is warming rapidly, with concomitant sea ice losses and ecosystem changes. The animals most vulnerable to Arctic food web changes are long-lived and slow-growing such as marine mammals, which may not be able to adapt rapidly enough to respond to changes in their resource bases. To determine the current extent and sources of these resource bases, we examined isotopic and trophic niches for marine mammals in the European Arctic using skin carbon (δ13C) and nitrogen (δ 15N) stable isotope (SI) compositions from 10 species: blue, fin, humpback, minke, sperm and white whales, bearded and ringed seals, walruses and polar bears, and dietary fatty acids (FAs) in polar bears, walruses and most of the whale species listed here. SI values showed clear species separation by trophic behaviour and carbon sources. Bearded seals, walruses and white whales had the smallest isotopic niches; these species are all resident High Arctic species and are likely to be particularly vulnerable to changes in Arctic ecosystems. We found clear separation between FA groupings driven by pelagic, benthic and planktonic/algal sources: pelagic FAs in all whales, benthic FAs in walruses, and copepod/algae/dinoflagellate FAs in polar bears, with some polar bear compositions approaching those of the whales and walruses. There is strong niche partitioning between study species with minimal functional redundancy, which could impact Arctic ecosystem structure and connectivity if populations of these large nutrient vectors are reduced or lost

    Novel assessment of the variation in cervical inter-vertebral motor control in a healthy pain-free population

    Get PDF
    Spinal control at intervertebral levels is dependent on interactions between the active, passive and neural control elements. However, this has never been quantifiable, and has therefore been outside the reach of clinical assessments and research. This study used fluoroscopy during repeated unconstrained flexion and return neck movements to calculate intersegmental motor control (MC), defined as the difference and variation in repeated continuous angular motion from its average path. The study aimed to determine control values for MC at individual levels and its variability. Twenty male volunteers aged 19 to 29 received fluoroscopic screening of their cervical spines during 4 repetitions of neutral to full flexion and return motion. Moving vertebral images from C0-C1 to C6-C7 were tracked using cross-correlation codes written in Matlab. MC for each level was defined as the mean of the absolute differences between each repetition’s angular path and their mean and its variability as represented by the SD. 1-way ANOVA and Tukey multiple comparisons were used to identify significant contrasts between levels. The mean MC differences and SDs were highest at C1-2, suggesting that this level has the least control and the most variability. Results at this level alone were highly significant (F-ratio 10.88 and 9.79 P<0.0001). Significant contrasts were only found between C1-C2 and all other levels. The mean MC difference for summed C1-6 levels was 3.4o (0.7-6.1). This study is the first to quantify intervertebral MC in the cervical spine in asymptomatic people. Studies of neck pain patients are now merited
    • …
    corecore