630 research outputs found

    Investigation and study of a multi-aperture antenna system final report, 1 jan. - 1 apr. 1964

    Get PDF
    Multiple aperture adaptive antenna system for telemetry reception from remote space vehicle

    Physicochemical characterization of nebulized superparamagnetic iron oxide nanoparticles (SPIONs)

    Get PDF
    Abstract Background: Aerosol-mediated delivery of nano-based therapeutics to the lung has emerged as a promising alternative for treatment and prevention of lung diseases. Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention for such applications due to their biocompatibility and magnetic properties. However, information is lacking about the characteristics of nebulized SPIONs for use as a therapeutic aerosol. To address this need, we conducted a physicochemical characterization of nebulized Rienso, a SPION-based formulation for intravenous treatment of anemia. Methods: Four different concentrations of SPION suspensions were nebulized with a one-jet nebulizer. Particle size was measured in suspension by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and nanoparticle tracking analysis (NTA), and in the aerosol by a scanning mobility particle sizer (SMPS). Results: The average particle size in suspension as measured by TEM, PCS, and NTA was 9±2 nm, 27±7 nm, and 56±10 nm, respectively. The particle size in suspension remained the same before and after the nebulization process. However, after aerosol collection in an impinger, the suspended particle size increased to 159±46 nm as measured by NTA. The aerosol particle concentration increased linearly with increasing suspension concentration, and the aerodynamic diameter remained relatively stable at around 75 nm as measured by SMPS. Conclusions: We demonstrated that the total number and particle size in the aerosol were modulated as a function of the initial concentration in the nebulizer. The data obtained mark the first known independent characterization of nebulized Rienso and, as such, provide critical information on the behavior of Rienso nanoparticles in an aerosol. The data obtained in this study add new knowledge to the existing body of literature on potential applications of SPION suspensions as inhaled aerosol therapeutics

    T cells enhance gold nanoparticle delivery to tumors in vivo

    Get PDF
    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation

    Size-controlled synthesis of monodispersed gold nanoparticles via carbon monoxide gas reduction

    Get PDF
    An in depth analysis of gold nanoparticle (AuNP) synthesis and size tuning, utilizing carbon monoxide (CO) gas as a reducing agent, is presented for the first time. The sizes of the AuNPs are tunable from ~4 to 100 nm by altering the concentration of HAuCl4 and inlet CO gas-injection flow rate. It is also found that speciation of aqueous HAuCl4, prior to reduction, influences the size, morphology, and properties of AuNPs when reduced with CO gas. Ensemble extinction spectra and TEM images provide clear evidence that CO reduction offers a high level of monodispersity with standard deviations as low as 3%. Upon synthesis, no excess reducing agent remains in solution eliminating the need for purification. The time necessary to synthesize AuNPs, using CO, is less than 2 min

    Evaluation of the cobas Cdiff Test for Detection of Toxigenic Clostridium difficile in Stool Samples

    Get PDF
    Nucleic acid amplification tests (NAATs) are reliable tools for the detection of toxigenic Clostridium difficile from unformed (liquid or soft) stool samples. The objective of this study was to evaluate performance of the cobas Cdiff test on the cobas 4800 system using prospectively collected stool specimens from patients suspected of having C. difficile infection (CDI). The performance of the cobas Cdiff test was compared to the results of combined direct and broth-enriched toxigenic culture methods in a large, multicenter clinical trial. Additional discrepancy analysis was performed by using the Xpert C. difficile Epi test. Sample storage was evaluated by using contrived and fresh samples before and after storage at -20°C. Testing was performed on samples from 683 subjects (306 males and 377 females); 113 (16.5%) of 683 subjects were positive for toxigenic C. difficile by direct toxigenic culture, and 141 of 682 subjects were positive by using the combined direct and enriched toxigenic culture method (reference method), for a prevalence rate of 20.7%. The sensitivity and specificity of the cobas Cdiff test compared to the combined direct and enriched culture method were 92.9% (131/141; 95% confidence interval [CI], 87.4% to 96.1%) and 98.7% (534/541; 95% CI, 97.4% to 99.4%), respectively. Discrepancy analysis using results for retested samples from a second NAAT (Xpert C. difficile/Epi test; Cepheid, Sunnyvale, CA) found no false-negative and 4 false-positive cobas Cdiff test results. There was no difference in positive and negative results in comparisons of fresh and stored samples. These results support the use of the cobas Cdiff test as a robust aid in the diagnosis of CDI

    Dimerization occurs during the reversible acid inactivation of 2-oxo-4-hydroxyglutarate aldolase from Escherichia coli

    Full text link
    Exposure of Escherichia coli 2-oxo-4-hydroxyglutarate aldolase (4-hydroxy-2-oxoglutarate glyoxylate-lyase, EC 4.1.3.16) (molecular WEIGHT = 63000) to phosphoric acid at pH 1.6 for 10 min at 4[delta]C causes 95% or greater inactivation. No significant effect on the rate or extent of inactivation is caused by varied aldolase concentrations or the presence of exogenous proteins. Chloride ion (50-100 mM) or 10 mM 2-oxo-4-hydroxyglutarate markedly decreases both the rate and extent of inactivation; good protection is also afforded by 10 mM pyruvate, glyoxylate, glyoxal, 2-oxoglutarate or 2-oxobutyrate. Whereas native aldolase has two free and three buried sulfhydryl groups, all five are exposed in the acid-inactivated enzyme and the molecular weight of this species at pH 1.6 is 126000. Ultraviolet absorbance difference spectra, circular dichroism spectra and ultracentrifugation studies establish that the inactivation process is characterized by an alteration of secondary and tertiary structure as well as an aggregation to a dimer of the native molecule. Reactivation of enzyme activity to 60-80% of the original level is seen within 20 min at pH 6 to 8; examination of inactivation/reactivation as a function of pH indicates that these two processes occur via kinetically distinct pathways. Native and reactivated enzymes are identical in molecular weight, sulfhydryl titer, Km and [alpha]-helix content.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25055/1/0000483.pd

    Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells

    Get PDF
    Diamond nanoparticles (nanodiamonds) have been recently proposed as new labels for cellular imaging. For small nanodiamonds (size <40 nm) resonant laser scattering and Raman scattering cross-sections are too small to allow single nanoparticle observation. Nanodiamonds can however be rendered photoluminescent with a perfect photostability at room temperature. Such a remarkable property allows easier single-particle tracking over long time-scales. In this work we use photoluminescent nanodiamonds of size <50 nm for intracellular labeling and investigate the mechanism of their uptake by living cells . By blocking selectively different uptake processes we show that nanodiamonds enter cells mainly by endocytosis and converging data indicate that it is clathrin mediated. We also examine nanodiamonds intracellular localization in endocytic vesicles using immunofluorescence and transmission electron microscopy. We find a high degree of colocalization between vesicles and the biggest nanoparticles or aggregates, while the smallest particles appear free in the cytosol. Our results pave the way for the use of photoluminescent nanodiamonds in targeted intracellular labeling or biomolecule deliver

    Levosimendan in Acute and Advanced Heart Failure : an Expert Perspective on Posology and Therapeutic Application

    Get PDF
    Levosimendan, a calcium sensitizer and potassium channel-opener, is widely appreciated by many specialist heart failure practitioners for its effects on systemic and pulmonary hemodynamics and for the relief of symptoms of acute heart failure. The drug's impact on mortality in large randomized controlled trials has been inconsistent or inconclusive but, in contrast to conventional inotropes, there have been no indications of worsened survival and some signals of improved heart failure-related quality of life. For this reason, levosimendan has been proposed as a safer inodilator option than traditional agents in settings, such as advanced heart failure. Positive effects of levosimendan on renal function have also been described. At the HEART FAILURE 2018 congress of the Heart Failure Association of the European Society of Cardiology, safe and effective use levosimendan in acute and advanced heart failure was examined in a series of expert tutorials. The proceedings of those tutorials are summarized in this review, with special reference to advanced heart failure and heart failure with concomitant renal dysfunction. Meta-analysis of clinical trials data is supportive of a renal-protective effect of levosimendan, while physiological observations suggest that this effect is exerted at least in part via organ-specific effects that may include selective vasodilation of glomerular afferent arterioles and increased renal blood flow, with no compromise of renal oxygenation. These lines of evidence require further investigation and their clinical significance needs to be evaluated in specifically designed prospective trials.Peer reviewe

    Effects of an online information tool on post-traumatic stress disorder in relatives of intensive care unit patients: a multicenter double-blind, randomized, placebo-controlled trial (ICU-Families-Study).

    Get PDF
    PURPOSE Intensive care unit (ICU) hospitalization is challenging for the family members of the patients. Most family members report some level of anxiety and depression, sometimes even resulting in post-traumatic stress disorder (PTSD). An association has been reported between lack of information and PTSD. This study had three aims: to quantify the psychological burden of family members of critically ill patients, to explore whether a website with specific information could reduce PTSD symptoms, and to ascertain whether a website with information about intensive care would be used. METHOD A multicenter double-blind, randomized, placebo-controlled trial was carried out in Austria and Switzerland. RESULTS In total, 89 members of families of critically ill patients (mean age 47.3 ± 12.9 years, female n = 59, 66.3%) were included in the study. 46 relatives were allocated to the intervention website and 43 to the control website. Baseline Impact of Event Scale (IES) score was 27.5 ± 12.7. Overall, 50% showed clinically relevant PTSD symptoms at baseline. Mean IES score for the primary endpoint (~ 30 days after inclusion, T1) was 24 ± 15.8 (intervention 23.9 ± 17.9 vs. control 24.1 ± 13.5, p = 0.892). Hospital Anxiety and Depression Scale (HADS - Deutsch (D)) score at T1 was 12.2 ± 6.1 (min. 3, max. 31) and did not differ between groups. Use of the website differed between the groups (intervention min. 1, max. 14 vs. min. 1, max. 3; total 1386 "clicks" on the website, intervention 1021 vs. control 365). Recruitment was prematurely stopped in February 2020 due to coronavirus disease 2019 (COVID-19). CONCLUSION Family members of critically ill patients often have significant PTSD symptoms and online information on critical illness did not result in reduced PTSD symptoms

    Assessment of reproducibility of matrix-assisted laser desorption ionization - Time of flight mass spectrometry for bacterial and yeast identification

    Get PDF
    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) has revolutionized the identification of clinical bacterial and yeast isolates. However, data describing the reproducibility of MALDI-TOF MS for microbial identification are scarce. In this study, we show that MALDI-TOF MS-based microbial identification is highly reproducible and can tolerate numerous variables, including differences in testing environments, instruments, operators, reagent lots, and sample positioning patterns. Finally, we reveal that samples of bacterial and yeast isolates prepared for MALDI-TOF MS identification can be repeatedly analyzed without compromising organism identification
    corecore