516 research outputs found

    On the Importance of Engaging Students in Crafting Definitions

    Get PDF
    In this paper we describe an activity for engaging students in crafting definitions. We explore the strengths of this particular activity as well as the broader implications of engaging students in crafting definitions more generally

    Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials

    Get PDF
    Recent interest in the environmental fate and effects of manufactured CeO2 nanomaterials (nanoceria) has stemmed from its expanded use for a variety of applications including fuel additives, catalytic converters, chemical and mechanical planarization media and other uses. This has led to a wave of publications on the toxicological effects of nanoceria in ecological receptor species, but only limited information is available on possible environmental releases, concentrations in environmental media, or environmental transformations. In this paper, we make initial estimates of likely environmental releases and exposure concentrations in soils and water and compare them to published toxicity values. Insufficient information was available to estimate aquatic exposures, but we estimated inputs to a hypothetical wastewater treatment plant that could result in effluent concentrations that would result in acute toxicity to the most sensitive aquatic organisms tested so far, cyanobacteria. The purpose of this exercise is to identify which areas are lacking in data to perform either regional or site specific ecological risk assessments. While estimates can be made for releases from use as a diesel fuel additive, and predicted toxicity is low in most terrestrial species tested to date, estimates for releases from other uses are difficult at this stage. We recommend that future studies focus on environmentally realistic exposures that take into account potential environmental transformations of the nanoceria surface as well as chronic toxicity studies in benthic aquatic organisms, soil invertebrates and microorgansims

    A high resolution study of dynamic changes of Ce2O3 and CeO2 nanoparticles in complex environmental media

    Get PDF
    Ceria nanoparticles (NPs) rapidly and easily cycle between Ce(III) and Ce(IV) oxidation states, making them prime candidates for commercial and other applications. Increased commercial use has resulted in increased discharge to the environment and increased associated risk. Once in complex media such as environmental waters or toxicology exposure media, the same redox transformations can occur, causing altered behavior and effects compared to the pristine NPs. This study used high resolution scanning transmission electron microscopy and electron energy loss spectroscopy to investigate changes in structure and oxidation state of small, polymer-coated ceria suspensions in complex media. NPs initially in either the III or IV oxidation states, but otherwise identical, were used. Ce(IV) NPs were changed to mixed (III, IV) NPs at high ionic strengths, while the presence of natural organic macromolecules (NOM) stabilized the oxidation state and increased crystallinity. The Ce(III) NPs remained as Ce(III) at high ionic strengths, but were modified by the presence of NOM, causing reduced crystallinity and degradation of the NPs. Subtle changes to NP properties upon addition to environmental or ecotoxicology media suggest that there may be small but important effects on fate and effects of NPs compared to their pristine form

    IFITM3 restricts the morbidity and mortality associated with influenza

    Get PDF
    The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses1, 2, 3, 4, 5, 6, 7. Both the magnitude and breadth of the IFITM proteins’ in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model8, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 ‘Spanish’ influenza9, 10. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and human

    Epistemological framing and novice elementary teachers’ approaches to learning and teaching engineering design

    Full text link
    As engineering learning experiences increasingly begin in elementary school, elementary teacher preparation programs are an important site for the study of teacher development in engineering education. In this article, we argue that the stances that novice teachers adopt toward engineering learning and knowledge are consequential for the opportunities they create for students. We present a comparative case study examining the epistemological framing dynamics of two novice urban teachers, Ana and Ben, as they learned and taught engineering design during a four‐week institute for new elementary teachers. Although the two teachers had very similar teacher preparation backgrounds, they interpreted the purposes of engineering design learning and teaching in meaningfully different ways. During her own engineering sessions, Ana took up the goal not only of meeting the needs of the client but also of making scientific sense of artifacts that might meet those needs. When facilitating students’ engineering, she prioritized their building knowledge collaboratively about how things work. By contrast, when Ben worked on his own engineering, he took up the goal of delivering a product. When teaching engineering to students, he offered them constrained prototyping tasks to serve as hands‐on contexts for reviewing scientific explanations. These findings call for teacher educators to support teachers’ framing of engineering design as a knowledge building enterprise through explicit conversations about epistemology, apprenticeship in sense‐making strategies, and tasks intentionally designed to encourage reasoning about design artifacts.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151339/1/tea21541_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151339/2/tea21541.pd

    The effect of professional development on elementary science teachers’ understanding, confidence, and classroom implementation of reform‐based science instruction

    Get PDF
    Through a randomized controlled trial, this mixed‐methods study evaluated changes in elementary science teachers’ understandings, confidence, and classroom implementation of problem‐based learning (PBL), inquiry, and nature of science (NOS) instruction following participation in a professional development (PD) as well as the components of the PD that teachers perceived facilitated these changes. Results indicated that following the PD, treatment teacher (n = 139) understandings of and confidence for teaching inquiry, NOS, and PBL were significantly greater than control teachers (n = 98) after controlling for preunderstandings and confidence. The effect sizes were large. Treatment teachers also incorporated significantly more PBL, inquiry, and NOS into their instruction. Modeling, microteaching with feedback and reflection, and in‐classroom coaching facilitated teachers’ confidence, understanding, and intention to implement the reform‐based practices they learned. Implications for the understanding of the relationship between knowledge, confidence, and practice as well as elementary science teacher PD design are discussed

    Epidemiologic approaches to assessing human cancer risk from consuming aquatic food resources from chemically contaminated water.

    Get PDF
    Epidemiologic approaches to assessing human cancer risk from consuming fish from contaminated waters must confront the problems of long latency and rarity of the end point (cancer). The latency problem makes determination of diet history more difficult, while the low frequency of cancer as an end point reduces the statistical power of the study. These factors are discussed in relation to the study designs most commonly employed in epidemiology. It is suggested that the use of biomarkers for persistent chemicals may be useful to mitigate the difficulty of determining exposure, while the use of more prevalent and timely end points, such as carcinogen-DNA adducts or oncogene proteins, may make the latency and rarity problems more tractable
    • 

    corecore