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Abstract

Through a randomized controlled trial, this mixed‐methods

study evaluated changes in elementary science teachers’

understandings, confidence, and classroom implementation of

problem‐based learning (PBL), inquiry, and nature of science

(NOS) instruction following participation in a professional

development (PD) as well as the components of the PD that

teachers perceived facilitated these changes. Results indicated

that following the PD, treatment teacher (n = 139) under-

standings of and confidence for teaching inquiry, NOS, and

PBL were significantly greater than control teachers (n = 98)

after controlling for preunderstandings and confidence. The

effect sizes were large. Treatment teachers also incorporated

significantly more PBL, inquiry, and NOS into their instruction.

Modeling, microteaching with feedback and reflection, and in‐
classroom coaching facilitated teachers’ confidence, under-

standing, and intention to implement the reform‐based
practices they learned. Implications for the understanding of

the relationship between knowledge, confidence, and practice

as well as elementary science teacher PD design are discussed.
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The Framework for K‐12 Science Education identifies scientific literacy as a principal goal of science education

(National Research Council [NRC], 2012). Yet, achieving scientific literacy is complex and challenging. It requires

students to be proficient at knowing, using, and interpreting scientific explanations of the natural world, generating

and evaluating evidence, understanding the nature of and how scientific knowledge is developed, and participating

productively in scientific practice and discourse (NRC, 2007). Research suggests students develop scientific literacy

through student‐centered reform‐based instruction that promotes students’ conceptual understanding and use of

science concepts, provide students opportunities to learn about and practice science inquiry and the skills

necessary to conduct inquiry, and includes explicit instruction about the nature of scientific knowledge (e.g.,

Lederman, 2007; NRC, 2012).

Such instruction necessarily places the teacher in the role of facilitator of learning (NRC, 2012). Indeed, a

number of studies suggest the effectiveness of reform‐based science instruction on students’ achievement and

attitudes toward science is influenced by teachers’ understandings, and practices (Kanter & Konstantopoulos,

2010; Roth et al., 2011). Yet, elementary teachers often do not have backgrounds in science and many do not teach

science daily (Banilower et al., 2018), both of which relate to personal science teaching efficacy (confidence;

Ramey‐Gassert, Shroyer, & Staver, 1996). Therefore, the goal of this mixed‐methods randomized controlled trial

was to determine if participation in statewide professional development (PD) program, the design of which was

aligned with key components of effective PD (e.g., Desimone, 2009; Loucks‐Horsley, Stiles, Mundry, Love, &

Hewson, 2010; Voogt et al., 2015), improved elementary teachers’ confidence, understandings, and classroom

implementation of reform‐based science instruction (e.g., inquiry).

1 | REFORM ‐BASED SCIENCE INSTRUCTION

The PD that served as the context of the present investigation emphasized three reform‐based practices identified

in the literature as supporting the development of students’ scientific literacy and increasing student science

achievement: problem‐based learning (PBL), inquiry, and nature of science (NOS; e.g., Akerson & Abd‐El‐Khalick,
2003; Hmelo‐Silver, 2004; NRC, 2012; Roth et al., 2011). These three constructs were selected because PBL can be

used as an overarching structure for explicit NOS and inquiry instruction (e.g., Maeng, Bell, St. Clair, Gonczi, &

Whitworth, 2018; Moutinho, Torres, Fernandes, & Vasconcelos, 2015).

In PBL, students investigate a meaningful, real‐world problem and present solutions to the problem based on

their findings (Sterling, 2007). PBL incorporates an authentic context, problems with multiple or divergent

solutions, inquiry experiences, and collaboration among students (Hmelo‐Silver, 2004). Additionally, it facilitates

students’ real‐world application of scientific knowledge and methods through student‐centered instruction (Chin &

Chia, 2004). When inquiry investigations are embedded within PBL units, students are able to investigate

questions, analyze data, and synthesize their findings from multiple investigations to help solve the overarching

PBL problem. Asking questions, planning and carrying out investigations, analyzing and interpreting data,

constructing explanations, and obtaining, evaluating, and communicating information constitute the elements of

scientific inquiry (Martinez, Borko, & Stecher, 2012).

PBL also has the potential to provide opportunities for teachers to explicitly address NOS in instruction (Maeng

et al., 2018). NOS instruction involves explicitly teaching students the values and assumptions essential to scientific

knowledge development. The science education community agrees on the importance of NOS instruction and

several NOS ideas appropriate to teach K‐12 students (Bell, Mulvey, & Maeng, 2016; Lederman & Lederman, 2014;

McComas, Clough, & Almazroa, 1998; NGSS Lead States, 2013). These ideas include that scientific knowledge is

empirical, simultaneously reliable and tentative, based on observation and inference. In addition, scientific theories

and laws are different kinds of knowledge, and many methods are employed to develop scientific knowledge.

Researchers also agree effective NOS instruction makes these ideas explicit to students (e.g., Abd‐El‐Khalick &

Akerson, 2004; Akerson & Hanuscin, 2007; Bell, Abd‐El‐Khalick, & Lederman, 1998). Including explicit NOS
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instruction in the context of PBL units has the potential to facilitate students’ consideration of the authenticity of

the problem and how their investigations are similar to the work of practicing scientists (e.g., Maeng et al., 2018;

Moutinho et al., 2015).

2 | CHANGING TEACHERS ’ CONFIDENCE, UNDERSTANDINGS, AND
PRACTICE

Such reform‐based approaches to science instruction represent dramatic shifts from traditional instruction (Loucks‐
Horsley & Matsumoto, 1999) and previous attempts to prepare teachers to teach inquiry and NOS report mixed

results (e.g., Lederman, 2007; Roehrig & Luft, 2004; Schneider, Krajcik, & Blumenfeld, 2005). Significant barriers to

the implementation of reform‐based science instruction among elementary teachers are confidence, content

knowledge, and knowledge of how to implement reforms‐based practices (Lakshmanan, Heath, Perlmutter, & Elder,

2011; Ramey‐Gassert et al., 1996; Sandholtz & Ringstaff, 2014). Other barriers to reform‐based instruction are

institutional (e.g., standardized testing) and technical (e.g., lack of resources or materials; e.g., Arora, Kean, &

Anthony, 2000; Bauer & Kenton, 2005; Johnson, 2006, 2007; Keys & Bryan, 2001).

Banduraʼs (1986) Social Learning Theory describes confidence or personal self‐efficacy as a component of self‐
efficacy. The science education literature is replete with studies on the factors that influence elementary teachers’

confidence in their ability to effectively teach science (i.e., personal science teaching efficacy; e.g., Ramey‐Gassert &
Shroyer, 1992). Factors that contribute to high levels of confidence for science teaching include strong science

background, desire to implement reform‐based instruction, and elementary science teaching experience (e.g., Cantrell,

Young, & Moore, 2003; Enochs, Scharmann, & Riggs, 1995; Mulholland, Dorman, & Odgers, 2004; Ramey‐Gassert et al.,
1996). Importantly, a number of studies suggest elementary teachers’ confidence may influence their reform‐based
instructional practices (e.g., Lakshmanan et al., 2011; Ramey‐Gassert et al., 1996; Sandholtz & Ringstaff, 2014).

In addition to confidence, teachers’ reluctance to implement reform‐based science instruction may also be

related to their knowledge of science content, understandings of NOS, and/or familiarity of pedagogical approaches

(e.g., inquiry, PBL) that support reform‐based instruction (e.g., Johnson, 2006, 2007; Lederman, 2007; Loucks‐
Horsley et al., 2010; Supovitz & Turner, 2000). For example, effective NOS and inquiry instruction does not come

easily for most teachers (e.g., Akerson & Abd‐El‐Khalick, 2003; Bell et al., 1998; Lederman, 2007; Lederman,

Lederman, Kim, & Ko, 2012). Some teachers conflate inquiry instruction with hands‐on instruction and teaching

NOS with inquiry and process skills (Crawford, 2000; NRC, 2000). Still, other teachers do not recognize that NOS

instruction must explicitly address targeted NOS conceptions through student reflection and discussion to be

effective (e.g., Bell, Blair, Crawford, & Lederman, 2003; Hanuscin, Akerson, & Phillipson‐Mower, 2006; Khishfe,

2008; Scharmann, Smith, James, & Jensen, 2005; Schwartz, Lederman, & Crawford, 2004). In contrast to what is

known about effective science teaching, Trygstad, Smith, Banilower, and Nelson (2013) note that 40% of

elementary teachers believe ideas should be explained to students before students consider the evidence. In

addition, over 50% of elementary teachers endorse the idea that hands‐on activities should be used primarily for

reinforcement and over 80% agree that students should be given definitions for new vocabulary at the beginning of

instruction. “These inconsistencies in teacher pedagogical beliefs represent a potential barrier” to reform‐based
science instruction (Trygstad et al., 2013, p. 5).

3 | EFFECTIVE PD

Given these challenges, the science education community is committed to designing and implementing PD that

improves teachers’ knowledge and classroom implementation of reform‐based pedagogy (Johnson, 2006, 2007; Loucks‐
Horsley et al., 2010; Supovitz & Turner, 2000). However, changing teachers’ practice is a time‐consuming and complex
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process (Desimone, 2009; Lotter, Harwood, & Bonner, 2007). Previous research suggests that PD aligned with a

situated learning perspective may be effective at changing teachers’ beliefs and practices (e.g., Bell et al., 2016; Maeng

et al., 2018; Voogt et al., 2015). Situated learning theory proposes that learning occurs best in the context in which it will

be used and that interactions between individuals support learning (Lave & Wenger, 1991; Orgill, 2007).

Consistent with situated learning theory, the literature indicates that for science teacher PD to elicit desired

changes in teachers’ practices, it should be sustained and ongoing, coherent, and support teachers in their classroom

environments through expert coaching (e.g., D. K. Cohen & Hill, 2000; Johnson, Kahle, & Fargo, 2007; Supovitz,

Mayer, & Kahle, 2000). Sustained and ongoing refers to both the total hours of PD and the amount of time over

which the PD occurs (Desimone, 2009). Coherence (Birman, Desimone, Porter, & Garet, 2000) and expert coaching

(Loucks‐Horsley et al., 2010; Luft et al., 2011) facilitates teachers’ implementation of new teaching strategies.

Coherent PD builds on previous activities, is followed with future PD activities, is consistent with teacher goals, and

draws teachers into dialogues about their experiences with other teachers and administrators in their own school

(Birman et al., 2000). Providing teachers with expert coaching is one way to continue the PD through a program of

teacher learning and support teachers as they attempt new practices (Grierson & Woloshyn, 2013; Luft

et al., 2011).

Effective PD also acknowledges teachers’ current practices, is content‐focused, provides teachers with

opportunities for active learning, and fosters collective participation (Desimone, 2009; Loucks‐Horsley et al., 2010;

Supovitz & Turner, 2000). Content focus refers to the ability of PD to support teachers in understanding subject

matter, learners and learning, and teaching methods (Loucks‐Horsley & Matsumoto, 1999). It is important for PD to

focus on content and methods to increase teacher learning and skills (Birman et al., 2000; Desimone, 2009;

Kennedy, 1999; Loucks‐Horsley & Matsumoto, 1999). Active learning during PD can take numerous forms including

observing other teachers, observing or videotaping lessons with opportunities for reflection, reviewing and

analyzing student work, leading or participating in discussions, developing lesson plans, or practicing a teaching

method in a group setting (i.e., microteaching; Desimone, 2009). The presence of teachers from similar schools,

department, subject areas, or grade levels, or collective participation, can enable conversations and discussions that

enhance teacher learning through increased active learning and coherence (Birman et al., 2000; Borko, 2004; Loucks‐
Horsley & Matsumoto, 1999). Other advantages of collective participation include the opportunity to develop a

professional learning community and for teachers to discuss changes to their curriculum as a group (Birman et al.,

2000). These elements of effective PD are well‐aligned with a situated learning perspective (e.g., Voogt et al., 2015).

4 | PURPOSE

There is a clear understanding about the importance of incorporating NOS, inquiry, and PBL into science

instruction. Likewise, there is sufficient research on the role confidence, content knowledge, and knowledge of

reform‐based practices play in elementary teachers’ implementation of reform‐based practices. Also, research is

clear that effective PD has the potential to change teachers’ practices. However, little is known about how

sustained, content‐based, coherent PD that incorporates a coaching component and is built on collective participation

specifically impacts elementary teachers’ understandings, confidence, and classroom implementation of PBL,

inquiry, NOS. Thus, the purpose of this investigation was to characterize changes in elementary teachers’

understanding, confidence, and classroom implementation of PBL, NOS, and inquiry instruction following a PD

experience that incorporated key characteristics of effective PD. Unique from previous studies, an RCT design

allowed us to make causal claims about the efficacy of the PD in supporting changes in teachers’ understandings,

confidence, and practices. The following research questions guided the investigation:

1) How did teachers’ understandings of PBL, inquiry, and NOS instruction change as a result of participation in the

PD and how did their understandings compare to those of control group teachers?
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2) How did teachers’ confidence in implementing PBL, inquiry, and NOS change after participation in the PD and

how did these teachers’ confidence compare to those of control group teachers?

3) How did treatment teachers’ classroom implementation of PBL, inquiry, and NOS compare to those of control

group teachers?

4) How much variance in teacher implementation of PBL, inquiry, and NOS can be explained by confidence,

understandings, and PD participation?

5) What components of the PD did teachers perceive as facilitating changes in their understandings, confidence,

and practices?

5 | METHODS

This explanatory mixed‐methods study (Creswell & Plano Clark, 2011) employed a cluster RCT design to evaluate

changes in participants’ confidence, knowledge, and practices as a result of the PD compared to a control group.

Quantitative data from pre/post/year‐end surveys and classroom observations were supported with qualitative

data from open‐ended survey and interview responses. An inductive approach was employed to ascertain

participants’ perceptions of the key components of the PD they perceived as facilitating changes in their

confidence, understanding, and practices.

5.1 | Participants/context

For each of the two cohorts, school teams (ranging in size from two to six members) of 4th through 6th‐grade
teachers from a mid‐Atlantic state were randomized via straight random assignment into treatment or control

groups. Of the 115 school teams that applied across the two cohorts, 58 school teams (n = 160) were randomized

into the treatment condition and 57 school teams (n = 157) were randomized into the control condition. Teams

randomized into the control condition were eligible to participate in the PD the following year; however, if they

elected to participate in the PD after their control year, they were not included in the treatment team analysis for

the purposes of this study.

The teams included in the analyses were the 54 teams (93%) and 40 teams (70%) of control teams retained

through the end of the study. On average, schools in the treatment condition were comprised of approximately

8.4% (standard deviation [SD] = 12.7) English Language Learners, 47.5% (SD = 25.1) receiving free or reduced‐price
meals, and 54.4% (SD = 28.7) non‐White students. Similarly, the demographics of schools in the control condition

were comprised of approximately 8.9% (SD = 16.7) English Language Learners, 50.2% (SD = 24.1) receiving free or

reduced‐price meals, and 48.7% (SD = 28.7) non‐White students. Independent t tests indicated no significant

difference between treatment or control school demographics.

Included in the 54 treatment teams were 139 teachers. The 40 control teams included 98 teachers. Treatment

teachers ranged in experience from 0 to 41 years with an average of 11.8 years (SD = 8.8). Control teachers ranged

in experience from 0 to 39 years with an average of 12.4 years (SD = 8.8). Demographic data (Table 1) were self‐
report and all participants were assigned a participant ID.

The goal of the investigation was to assess the impact of all of the PD components on teachers’ knowledge,

confidence, and implementation of target constructs; therefore, we defined the control group teachers as not

participating in any of these PD activities. Treatment teachers participated in an intensive 4‐week summer institute

with academic year follow‐up and coaching, while control teachers received no support from this PD program.

Table 2 identifies how the activities in the year‐long PD were aligned with the characteristics of effective PD. The

4‐week (152 contact hours) summer institute was implemented at four universities and was coplanned and

facilitated by teams of university science educators, scientists, engineers, and science and mathematics specialists.
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5.1.1 | Week 1

During the first week, teachers participated inactive, content‐focused PD around NOS and inquiry within the

context of PBL. In the first 2 days, the facilitators modeled how PBL could be used as a context for inquiry. The

teachers took on the role of a fifth‐grade student and received a News Flash that identified the problem to be

solved, (i.e., the Governor needed help determining how to reach energy independence by the year 2020 because of

brownouts in the state). The teachers learned they would need to develop and present an energy plan that included

“energy sources available in regions of [the state] so we donʼt have to rely on outside sources, discusses the

feasibility and efficiency of each source, and analyzes the environmental impact of the energy extraction,

production, and use” to the Governor. The teachers brainstormed a list of questions needed they needed to answer

to address the overarching question: “How can our state become energy independent?” As teachers shared their

TABLE 1 Participant demographic data

Gender Race/ethnicity

Condition Female (%) Male (%) White (%) Black (%) Hispanic (%) Asian (%) Native American (%)

Treatment (n = 139) 116 (85.9) 19 (14.1) 102 (75.6) 29 (21.5) 2 (1.5) 1 (0.7) 1 (0.7)

Control (n = 98) 80 (85.1) 14 (14.9) 73 (78.5) 17 (18.3) 2 (2.2) 1 (1.1) 0 (0)

Note: Not all teachers reported gender and ethnicity information. Percentages reported are for respondents to each

demographic question.

TABLE 2 Alignment of the components of effective PD with PD activities

PD timeframe PD activities

Corresponding effective PD

components

Week 1 Teachers attend in school teams Collective participation

Instruction on inquiry, NOS, and PBL situated within

content

Active learning, content‐focused,
coherence

Introduced to coaches

Collaborative development of PBL unit for camp

Content aligned to state Standards of Learning (SOLs)

Weeks 2 and 3

Camp week Collaborative PBL unit aligned with SOLs Coherence

Teachers practice new pedagogy with students during

camp

Active learning

Teachers receive feedback from facilitators, peers, and

coaches

Expert coaching

Module week Modules on integrating math, literacy/discourse,

technology, and engineering

Content‐focus

Field work and content instruction with researchers Active learning & content‐focused
Content aligned to SOLs Coherence

Week 4 Teachers work in school teams to develop PBL unit to

teach during academic year

Collective participation

Teachers work with coaches to plan PBL unit Active learning

Teachers work with principals and science coordinators Coherence

Expert coaching

Academic year Implementation of PBL unit Active learning

Coaching sessions (22.5 hr) Sustained, on‐going
Follow‐up sessions (14 hr) Coherence

Attendance at state science teachers’ conference Expert coaching

Abbreviations: NOS, nature of science; PBL, problem‐based learning; PD, professional development.
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questions, they categorized the questions by similar topics. The facilitators then introduced the idea of a question

map and shared one they had developed using the same question.

The facilitators selected one of the questions to focus on, “How is one type of energy transformed into another

type?” Teachers completed the Know and Want to Know portions of a KWL chart. Next, they conducted research on

energy forms, sources, and transfer through a reading, anticipation guide, and jigsaw with teachers in their group. After

sharing this information, the group received an Update from the Governorʼs Office. The update shared there was a tool

that could transform energy and investigating how it works and what it does might help them to solve their problem.

Teachers were then asked to explore the device, record observations, and think about how the object might work or

what it might do. (The device was a radiometer, but they were not told this.) The teachers designed an experiment using

the Four‐Question Strategy (Cothran, Geiss, & Rezba, 2000) to answer the question “How does this device work?”

Teachers were given a variety of materials they could use in their investigation and experimented with their groupʼs

chosen independent variable (light, heat, angle of light/heat, etc.). The groups then shared their results, issues they

encountered, and discussed what further information was needed to solve the overarching problem.

Following this, the teachers stepped out of their role as 5th graders and debriefed the experience with the

facilitators. First, the facilitators asked teachers to think about the features of the lesson structure that helped

them as learners and how the investigation allowed them to learn information that would help them to answer the

overarching question. Then, teachers debriefed the activities in terms of their role as a teacher. They discussed the

aspects of the activities they liked and compared this approach to their current approaches to teaching science,

specifically asking the teachers to consider the ways in which it was different from their current practice. Then,

teachers were introduced to a formal definition of PBL “Students solving a meaningful problem with multiple

solutions over time, as a scientist would in a real‐world context. The problem and context must be meaningful to

students.” and several key characteristics of PBL (e.g., overarching problem question, scenario, student role,

culminating activity). They were also introduced to a formal definition of inquiry “students asking questions,

collecting and analyzing data, and using evidence to solve problems” (Maeng & Bell, 2012, p. 3). The teachers then

discussed how the investigation they participated in using the Four‐Question Strategy aligned with this definition

of inquiry.

The next day, teachers were introduced to NOS. First, they completed a card sort in which they sorted

statements about science and NOS into agree, disagree, and not sure piles. This preassessment set the framework

for learning about NOS throughout the summer component of the PD; each teacher had their own set of cards and

they were asked to resort these cards at various points during the summer to assess if their ideas changed.

Following the card sort, teachers engaged in an investigation related to the PBL scenario from the previous day.

Facilitators then led a discussion to make this link explicit and to explicitly discuss the NOS ideas embedded in the

investigation from this day and from the radiometer investigation (see Maeng et al., 2018). The facilitators then

introduced the NOS ideas present in the state Standards (http://www.doe.virginia.gov/testing/sol/standards_docs/

science/index.shtml#2010).

Throughout the rest of the first week, facilitators built on these initial experiences to help teachers further

understand PBL, NOS, and inquiry and what science instruction that included these constructs would look like in

the classroom. The teachers also coplanned a PBL unit to be taught during a 2‐week summer camp for 4–6th‐grade
students. Teachers developed their question map as a whole group, then assigned questions to individual teachers

or teams of teachers who planned lessons for that portion of the summer camp. Scientists were present to aid

teachers in their content understanding.

5.1.2 | Weeks 2 and 3

Teachers were split into two groups during each of these weeks. One group of teachers taught the PBL they

had developed to the students in the summer camp. The teachers in this group who were not teaching observed
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using various observation protocols (i.e., inquiry and discourse, hands‐on and management, PBL and

connections, NOS and misconceptions). Every teacher had the opportunity to use each protocol at least

once. The recorded information was used at the end of every camp day to debrief the work of the teachers

who taught.

The other group of teachers not working with the campers continued with active, content‐focused PD with

scientists and experience modules. They learned how mathematics, engineering, technology, discourse, and literacy

could be integrated into a PBL unit and had an opportunity to begin brainstorming themes for the PBL unit they

would develop.

Teachers also engaged in field research experience with scientists for 2 or 3 days during this week. Throughout

these experiences, teachers learned content, engaged in collecting data and answering research questions, and

thinking about NOS (e.g., how their work paralleled the work of scientists). These opportunities provided rich

experiences upon which teachers could build a deeper understanding of science content and the approaches

scientists use to develop knowledge. During the third week, the two groups switched.

5.1.3 | Week 4

Teachers used this week to develop the PBL unit they would teach during the upcoming academic year. Teachers

worked with scientists, math specialists, their classroom coaches, and facilitators as they planned their unit. During

this week the teachers’ principals and/or division science coordinators attended a morning session to learn about

what the teachers experienced and they spent the afternoon with teachers to learn about their PBLs and the

support they might need during the academic year. On the final day of the summer institute, teachers shared a brief

overview of the PBL unit they were planning with the group. Throughout the 4 weeks, coaches attended 3 days to

meet, work with, and support teachers as they developed and planned their units.

5.1.4 | Academic year

During the academic year, teachers participated in at least 14 hr of follow‐up sessions and attended the annual

state science teachers' conference. Coaches worked with teachers 22.5 hr across the academic year to coplan,

coteach, observe, promote reflection, and provide feedback on teachers’ science instruction. Coaches were

experienced, often recently retired, elementary teachers. Before coaching, they received 16 hr of PD. During the

PD, they reviewed the goals for teachers and their role expectations, learned strategies for supporting teachers in

implementing PBL, inquiry, and NOS, and learned approaches for providing formative feedback to teachers using a

coaching cycle aligned with Cognitive Coaching (Costa & Garmston, 2002; Knight, 2009). Coaches also attended the

summer institute where they developed an initial rapport with the teachers with whom they would be working

during the academic year. Thus, the PD was well‐aligned with a situated learning perspective (e.g., Lave & Wenger,

1991) and the components identified in the PD literature as supporting teacher change (e.g., Desimone, 2009;

Loucks‐Horsley et al., 2010; Voogt et al., 2015).

5.2 | Data collection and analysis

Data for all treatment and control teachers consisted of the PBL, inquiry, and NOS Confidence and Knowledge

(PINCK) Survey, follow‐up interviews of a subset of teachers, videotaped classroom observations, and observation

forms. As the unit of randomization was the school team, analysis of differences in treatment and control teacher

confidence, understandings, and practices occurred at this level.
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5.2.1 | PINCK survey

PINCK Surveys were administered pre‐/post‐, and year‐end to elicit teachers’ understanding of key constructs

(PBL, inquiry, and NOS instruction), their confidence, and perceptions of the effectiveness of the PD through Likert‐
scale and open‐ended items.

Understandings

While validated instruments exist for assessing understandings of NOS and scientific inquiry (e.g., Lederman,

Abd‐El‐Khalick, Bell, & Schwartz, 2002; Lederman & Lederman, 2014), none of these proved appropriate for the

present investigation. For example, the set of tenets that comprised the PDʼs operational definition of NOS

(scientific knowledge is tentative, empirical, and influenced by social/cultural factors) is only a subset of those

addressed in Ledermanʼs et al. (2002) instrument. Further, it was critical that the instruments provide an

opportunity for participants to explicate their understandings of PBL, NOS, and inquiry through descriptions of

student and teacher behaviors during lessons that emphasize each of the target constructs. Finally, it was

important to avoid over‐burdening the participants with multiple instruments that contained writing‐intensive
items not related to the content of the PD. To address these issues, the researchers created a single instrument

(PINCK) informed by existing instruments (e.g., Lederman et al., 2002; Schwartz, Lederman, & Lederman,

2008), that asked participants to define and to describe what teachers/students do in a lesson that emphasizes

PBL, inquiry, and NOS, respectively. Content validity for the PINCK were supported by rounds of review by a

panel of three experts with backgrounds in science education and research evaluation. Each round of review

informed revisions to the instrument, which in turn was reviewed again by the panel. Rounds of review/revision

continued until the panel was satisfied that the instrument provided an effective measure of the three target

constructs. Finally, member‐check interviews of a subset of respondents during the study provided further

validation of PINCK responses.

Teachers’ pre‐, post‐PD, and year‐end definitions and descriptions of PBL, NOS, and inquiry instruction in the

classroom were analyzed using systematic data analysis (Miles & Huberman, 1994) and a multipart rubric validated

for face and content validity (Tables 3 and 4; Figure 1). Teachers’ responses were coded as not aligned, partially

aligned, and fully aligned for definitions and implementation of PBL, inquiry, and NOS instruction. These categories

Raters also coded teachers’ understanding that effective NOS instruction should be explicit. Two raters

independently coded each participantʼs open‐ended responses related to PBL, inquiry, and NOS and inter‐rater
agreement were established (~90%) by comparing independent analysis across approximately 30% of the data.

Discrepancies in coding were resolved through discussion. Examples of coded responses are provided in the

Supporting Information Methods and Figure 2.

Confidence and PD effectiveness

PINCK Surveys also assessed teachers’ confidence and perceptions of the effectiveness of the PD through Likert‐
scale and open‐ended items. For Likert‐scale items, the scale ranged from 1 (not very proficient) to 5 (highly

proficient). Teachers were also asked to indicate the confidence with which they implement these constructs into

their science instruction. Common to the post‐ and year‐end PINCK Surveys were additional Likert‐scale and open‐
ended questions designed to elicit teachers’ perceptions of the strengths and weaknesses of the PD, the quality of

the PD relative to other PD experiences, and teachers’ intent to implement what they learned.

Data from Likert‐scale items on each participant's pre‐, post‐, and year‐end PINCK Survey were analyzed using

descriptive and inferential statistics. School team means were calculated and univariate analysis of covariance

analysis of covariance (ANCOVA) was used to compare treatment and control school teams’ year‐end confidence in

integrating PBL, inquiry, and NOS into instruction, when outcome scores were controlled for preassessment

confidence. ANCOVA also explored differences between treatment and control teacher teams’ year‐end
understandings of PBL, inquiry, and NOS when controlling for preunderstanding.
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5.2.2 | Interviews

Following analysis of the pre‐ and post‐PINCK Survey, approximately 20% of treatment teachers (n = 31) across

cohorts and sites were purposefully selected for a follow‐up semi‐structured interview about their experience.

These participants were selected because their preintervention and postintervention survey responses provided

representation across three categories (i.e., little, moderate, or great changes) in their understanding of inquiry,

PBL, and NOS. Interview questions elicited teachers’ perspectives on the most and least valuable aspects of the PD,

components of the PD they planned to implement, and their suggestions for improvement. These interviews also

TABLE 3 Coding understandings and implementation of problem‐based learning and inquiry

Nonaligned Partially aligned Fully aligned

Problem‐
based

learning

(PBL)

Responses lack crucial

elements of the PD definition.

Definitions and examples align

better with hands‐on science

or inquiry. Response may

define hands‐on instruction or

inquiry without

acknowledging the following:

role of authentic context, the

open‐ended nature of the

task, meaningful problem, and

duration or response explicitly

indicates participant doesn’t

know.

Definitions and examples suggest

a partial understanding of PBL

and its key features. Response

indicates a role for inquiry and

authentic (real‐world) context
in PBL and may acknowledge a

subset of the following:

meaningful problem for students

to solve, open‐ended nature of

the task or the extended

duration of such lessons.

Examples may overemphasize

the teacher as the information

provider.

Definitions/examples

accurately reflect the PD

definition: A form of inquiry in

which students solve a

meaningful problem with

multiple solutions over time, as

a scientist would in a real‐world
context. The problem and

context must be meaningful to

students. Essential

components that may be

included in response: theme,

problem, student roles,

scenario, resources,

culminating project/

assessment, safety.

Inquiry Responses lack crucial

elements of the PD definition

(i.e., indicates only a role for

questioning or hands‐on, no
indication of analysis of data

on the part of students) or

response is expanded to

include PBL or response

explicitly indicates participant

doesn’t know.

Definitions and examples suggest

a partial understanding of

inquiry and its key features. It

may indicate that students do

only one of the following: (a)

analyze data, (b) solve problems,

(c) answer questions through

investigation. Participants may

cite students conducting

“investigations” without

elaboration. Response may

indicate inquiry must be hands‐
on or overemphasizes “the”

scientific method and

experimentation. Examples may

overemphasize the teacher as

the information provider.

Definitions/examples

accurately reflect the PD

definition: asking questions,

collecting and analyzing data,

using evidence to solve

problems. Key components

that may be included in

response: learners engage in

scientifically oriented

questions, gives priority to

evidence, formulates

explanations from evidence,

connects explanation to

scientific knowledge,

communicates and justifies

explanations.

Note: Evidence of italicized components must be present for a response to be coded at the level. Coding of both the

definition and application to the classroom (teacher and student actions) provided by participants should be weighed in

coming up with a classification for the response on a given dimension. If there are discrepancies between coding of the

definition and explanation, the application component should carry more weight. For example, if the participant gives the

PD definition verbatim (fully aligned), but their description of classroom application does not reflect aligned

implementation, coding should err toward the response of the description of how this approach is enacted in the classroom.

Nonaligned perspectives of the NOS (e.g., “proving,” overemphasis on “the” scientific method) in responses about PBL and

inquiry should be taken into account when coding participants’ NOS understandings.

Abbreviations: NOS, nature of science; PBL, problem‐based learning; PD, professional development.
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served to triangulate with survey responses in that we reviewed interview responses for language that reflected

consistency in understanding and confidence.

An inductive approach, as described by Bogdan and Biklen (1992), was used to analyze the open‐ended survey

responses and follow‐up interviews to characterize participants’ perceptions of how the PD facilitated changes in

their understandings, confidence, and practices. After an initial holistic reading of the data set by two members of

the research team, codes were initially developed from the conceptual framework (e.g., inquiry, NOS, PBL,

collective participation, active learning, coherence, coaching, understanding, confidence, practice) and the holistic

reading (e.g., PD logistics, intentions to implement). These same members of the research team then applied the

coding scheme to the data and patterns in relationships between codes were identified and discussed. For example,

many teachers identified the importance of having the opportunity to teach students during the camp weeks of the

TABLE 4 Coding NOS understandings and instruction

Nonaligned Partially aligned Fully aligned

Response includes statements that

reflect absolute views of science.

Response indicates a partial

understanding of the tentative

and revisionary nature of

science.

Response reflects tentative and

revisionary views of science

consistent with the aspects of NOS

taught in PD.

or Response lists key elements of

NOS taught in PD without any

elaboration.

Response must include the following

key elements of the PD description

of NOS:

Response does not address any key

elements of the PD description of

NOS

or Scientific knowledge is tentative and

revisionary.

or Response does not include all of

the key elements of the PD

description of NOS.

Scientific knowledge is empirically‐
based.

Response indicates the participant

does not know.

or Social/cultural factors play a role in

the development of scientific

knowledge.

Response includes all key aspects

but includes misconceptions

about these aspects.

Implicit Explicit

Responses indicate that nature of

science is taught effectively through

implicit approaches and instruction.

Responses indicate students will

develop accurate conceptions of the

nature of science as a byproduct of

learning historical episodes of

scientific knowledge and/or

participating in authentic scientific

investigations.

Responses indicate that nature of

science is taught effectively through

explicit instruction. Responses

indicate students will develop

accurate conceptions of the nature

of science through instruction that

intentionally draws attention to

targeted aspects of the nature of

science through such methods as

discussion, reflection, and

questioning.

Note: This two‐part component of the rubric assesses the extent to which responses express tentative and revisionary view

of NOS and the extent to which responses indicate that these aspects of NOS must be explicitly addressed in science

teaching. Responses are coded based on the degree of alignment between responses and the PD description of

understandings of NOS in Figure 1. With regard to teaching NOS, responses are coded as implicit, if the response indicates

that students will learn about NOS from implicit approaches or explicit if the response indicates explicit instruction is

required to effectively teach NOS.

Abbreviations: NOS, nature of science; PD, professional development.
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PD. These instances were coded as “active learning.” The patterns that emerged from the coding process were then

discussed among the entire research team and refined to ensure they captured the essence of the data set. Once all

members of the team agreed upon the patterns that emerged, the analysis was to be considered complete.

5.2.3 | Classroom observations

Each participant’s classroom instruction was videotaped four times throughout the academic year at regular intervals

(two fall and two spring). Each interval was 3‐week long to provide some flexibility in terms of the school, teacher, and

observer schedule. Observers visited each teacher’s classroom once during each observation period to videotape their

science instruction. One potential concern of this approach was that for teachers in the treatment condition, these

observations were recorded by their coach. However, the coach’s role for the videotaped observations was simply to set

up a video camera in the back of the room and then send the recorded videotapes back to the research team for

analysis. The observed lessons were not directly influenced by the coach before the lesson being implemented/observed

(no coinstruction, coplanning, prompts, etc.). All teachers had some knowledge ahead of time of when they would be

observed, which had the potential to bias what they did during observations. To mitigate this, the research team also

collected contextual information regarding the observed lesson per a validated observation protocol. This information

was completed by the teachers and included objectives, what lessons occurred before the observation, and what

teachers anticipated teaching in lessons that followed the videotaped lesson in an attempt to capture what the teacher’s

instruction was like over time. Further, teachers and coaches in the treatment condition knew only that data were being

collected, but not how the data would be analyzed.

Videotapes were analyzed using a slightly modified and validated version of the Collaboratives for Excellence

in Teacher Preparation and Classroom Observation Protocol (CETP‐COP; Appeldoorn, 2004) by the research team.

Responses reflect absolutist conceptions of 
scientific knowledge. Responses indicate a 
lack of clear understanding of how 
evidence is used in science, that science is 
an social endeavor, and/or refer to THE 
scientific method or one scientific method. 
Responses indicate that scientific 
knowledge is made up mainly of the 
results of experiments and that scientific 
knowledge is inherently unbiased. 

Responses reflect tentative and revisionary 
conceptions of scientific knowledge. While 
scientific knowledge is empirically-based, it is not 
derived directly from observation alone. Rather, 
inferences, theories, and social/cultural factors all 
play a role in the development of scientific 
knowledge.  Science seeks to limit personal bias, 
often through formal processes; however, science 
can never totally eliminate subjectivity. Nor is 
totally eliminating subjectivity always a goal 
because of the important roles of imagination and 
creativity in science. Scientists do not follow a 
rigid algorithm but rather use a multitude of 
creative approaches to answer questions of 
interest. There is no single scientific method.  

Absolute                                                                                                     Revisionary 

                                (not aligned)                 (partially aligned)                        (fully aligned) 

F IGURE 1 Description of PD understandings of NOS. NOS, nature of science; PD, professional development

LI inquiry lab/activity: Students answer a research question through data analysis. (May be hands-
on or not, may be with a pre-existing data set.) 
NOS explicit nature of science instruction: Teacher intentionally draws students’ attention to 
targeted aspects of the nature of science through discussion, reflection, and specific questioning.  
PBL problem-based learning activity: Students solve a problem with multiple solutions over time 
like a scientist in a real-world context. (An entire observation may be coded PBL if the activity 
observed is part of a broader PBL unit.)

F IGURE 2 Coding scheme used to determine the presence or absence of PBL, inquiry, and NOS in observations.
NOS, nature of science; PBL, problem‐based learning
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Neither observers nor coaches participated in any analysis. The CETP‐COP instrument assesses four

dimensions related to teachers’ science instruction at 5‐min intervals across the entire lesson duration (i.e.,

instructional approaches, classroom engagement, cognitive activity, and quality of lesson). The focus of

classroom observations in the present study was on participants’ classroom enactment of PBL, NOS, and

inquiry; however, the original CETP‐COP does not specifically target these constructs. Therefore, the

researchers added items to the observation protocol to record whether participating teachers enacted such

instruction. This slightly modified version of the CETP‐COP was validated for content validity through two

rounds of feedback and revision from a panel of three experts with backgrounds in science education and

research evaluation.

For instruction codes, which are reported here, the presence (1) or absence (0) of inquiry (students answer a

research question through data analysis; may be hands‐on or not, may be with a preexisting data set), explicit NOS

instruction (teacher intentionally draws students’ attention to targeted aspects of the NOS through discussion,

reflection, and specific questioning), and whether the observed lesson was part of a PBL unit (students solve a

problem with multiple solutions over time like a scientist in a real‐world context. An entire observation may be

coded PBL if the activity observed is part of a broader PBL unit) were coded for each teacher. Since each of the

three variables was coded dichotomously for each teacher on the team (observed = 1) or (not observed = 0), teacher

team means were calculated and ranged from 0 (no teachers on the team used the instructional approach) to 1 (all

teachers on the team used the approach) for each timepoint and across all timepoints. Before coding, raters attended

an 8‐hr session in which the learned to use code observations using the CETP‐COP instrument. Following training,

the raters analyzed five video‐recorded lessons. Generalizability theory was employed to estimate reliability

because we had multiple raters (Shavelson & Webb, 1991). Generalizability theory provides a comprehensive

framework for estimating reliability that takes into account several potential sources of error. The results of this

analysis indicated that the generalizability coefficient was ρ = 0.71 for two raters. The average interrater agreement

reported by CETP‐COP developers was 71% (Appeldoorn, 2004). Considering all sources of error, a generalizability

coefficient of 0.7 indicates high reliability, especially for an open‐ended instrument. Approximately 6 months after

initial training, all raters coded another video and discussed their coding, which served as a drift check. This helped

maintain consistency across raters in applying codes over time. Independent t tests were then used to compare

differences in treatment and control teacher teams’ incorporation of PBL, NOS, and inquiry into instruction each of

the four timepoints and overall.

5.2.4 | Relationships between condition, confidence, understanding, and practice

Three multiple regressions were used to ascertain how teacher team understandings, confidence, practice, and PD

participation were related for PBL, inquiry, and NOS, respectively. Predictors included team condition (treatment

or control), postsummer institute understanding, and postsummer institute confidence. The outcome variable was

the overall implementation by the team. Preliminary analyses were conducted to ensure no violation of the

assumptions of normality, linearity, mutlicollinearity, and homoscedasticity. A Bonferroni adjusted α level was set at

.0167 (.05/3) to account for multiple comparisons.

6 | RESULTS

Overall, treatment teacher teams’ understandings and confidence in implementing reform‐based practices were

significantly greater than those of control teacher teams’ after participation in the PD. In addition, treatment

teacher teams implemented PBL, inquiry, and explicit NOS instruction significantly more than their peers in the

control group, with the exception of inquiry during the third observation period.
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6.1 | Understandings of reform‐based instructional strategies

Treatment teams’ understanding of PBL, inquiry, and NOS improved following the summer institute (all pre to

post ps < .001; Table 5) and were retained at the end of the year (all post to year‐end ps > .05). Treatment and

control teacher teams’ year‐end understandings of PBL, inquiry, and NOS understandings were compared via

univariate analysis of variance (Table 5). Results were statistically significant for all indicators (ps < .001)

favoring the treatment group outcomes. Treatment group means approached the middle of the scale (partially

aligned) for each construct while the control group means were between not aligned and partially aligned for

all constructs. The greatest differences favored treatment teams’ understandings of NOS. Effect sizes were

large for all constructs (J. Cohen, 1988) ranging from partial η2 = 0.173 for NOS instruction to partial η2 = 0.460

for NOS understandings.

Before the study, most teachers provided responses that did not reflect the aligned understandings of PBL,

inquiry, and NOS. Following the PD, treatment teachers made statements that reflected more aligned

understandings of these constructs than their counterparts in the control group (Table 6). For example, treatment

teachers’ responses about inquiry were more often partially or fully aligned and often reflected more broad

understandings of the types of investigations scientists employ when engaging in inquiry whereas control teachers’

partially aligned responses about inquiry instruction often emphasized the scientific method and experimentation.

Treatment teachers were more likely to include inquiry and real‐world problems as components PBL. By contrast,

many control teachers continued to conflate inquiry with PBL. Finally, treatment teachers were more likely to

provide partially aligned or fully responses about NOS instruction; almost all control teachers retained not aligned

understandings of NOS. In fact, many control teachers explicitly stated they did not know what NOS is or what

teachers or students do during a NOS lesson. Most treatment and control teachers retained the conception that

students could learn NOS implicitly.

Participants attributed their improved understandings to the PD. For example, one participant described

the process through which the facilitators introduced the concepts: “I’ve always kind of put inquiry and hands‐
on as being synonyms. And now I can see that the inquiry is where the students are actually asking the

questions themselves and using evidence” (E3‐T310, Interview). This participant indicated that following the

PD she had a better understanding of the constructs as a result of the structure of how the concepts were

introduced during the PD. Another participant summarized, “I like the way we were learners first, then planned

and implemented a PBL to practice, and then had time to work our own” (E3‐T310, Post‐PINCK Survey). Others

echoed this sentiment, “It was easy to learn them because I was doing them. I think if they just taught us what it

was, it wouldn’t have been as concrete as participating in it and planning it for campers.” (E3‐T370, Interview).

This teacher continued:

TABLE 5 School team understanding of key constructs

Pre‐PD, M (SD) Post‐PD, M (SD) Year‐end, M (SD)

Treatment Control Treatment Treatment Control p partial η2

PBL 1.06 (0.18) 1.13 (0.24) 1.83 (0.64) 1.63 (0.66) 1.05 (0.15) <0.001 0.261

Inquiry 1.43 (0.37) 1.61 (0.47) 1.95 (0.58) 2.10 (0.54) 1.60 (0.54) <0.001 0.207

NOS understanding 1.08 (0.17) 1.19 (0.30) 1.98 (0.54) 1.91 (0.55) 1.10 (0.22) <0.001 0.460

NOS instruction 1.00 (0.00) 1.00 (0.00) 1.46 (0.36) 1.35 (0.37) 1.06 (0.20) <0.001 0.173

Note: Treatment n = 54, control n = 40, means adjusted for school team baseline premeasure. For PBL, inquiry, and NOS

understandings, scale ranges from 1 = not aligned to 3 = fully aligned. For NOS instruction, scale ranges from 1 = implicit to

2 = explicit.

Abbreviations: NOS, nature of science; PBL, problem‐based learning; PD, professional development; SD, standard deviation.
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TABLE 6 Representative survey responses of treatment and control teachers’ pre and year‐end understandings
of PBL, inquiry, and NOS

Construct Year‐end treatmenta Year‐end controla

PBL Teachers present the problem, allow students to

research answers to the problem, and students

then perform hands‐on, inquiry‐based activities

to find answers to the real‐life problem.

(partially aligned, E2‐T240)

… an instructional approach in which a

problem is posed to students and the

students complete a project/assignment

that shows a solution. For example, the

question, “Which container will 100ml

of water evaporate the fastest in?”

Students would need to research

evaporation and design an experiment

to answer the question. (not aligned,

E2CT226)

Students are presented with a problem within a

group. They develop possible theories or

hypothesis to explain the problem. They use

hands‐on activities, research and other learning

activities working together in groups to seek

solutions to real problems through the process

of inquiry. (partially aligned, E2‐T204)

A question is stated and the students

work to find an answer. (not aligned,

E2CT221)

Inquiry It can be defined as the scientific process of

active exploration by which we use critical,

logical and creative‐thinking skills to raise and

engage in questions of personal interests.

Students learn by observing or engaging in an

event, devising questions based on their

observations, developing hypotheses,

formulating strategies for testing their theories,

performing the tests, analyzing and drawing

conclusions from test results, and

communicating their findings to others. fully

aligned, E3‐T339)

Science inquiry consists of conducting

science experiments in the classroom to

understand physics and the world

around us. Students will be asking the

questions and taking the steps needed

to understand the given problem of an

experiment. (partially aligned, E3CT326)

Inquiry occurs when students ask questions

about what occurs around them in the real

world. Students collect evidence and data

related to the questions being asked/answered.

Students use reasoning to move closer to a

solution. In the true inquiry, they realize that

often there is not a distinct correct answer,

which is a different mindset from the kind they

are used to in school. Students find out that

inquiry often leads to more questions rather

than answers alone. (fully aligned, E3‐T334)

Scientific inquiry is an ongoing process

where we are continuously learning

about the world around us. It is the

Scientific Method; we propose a

hypothesis then we test it and gather

evidence to provide an explanation for

why things occur as they do. (partially

aligned, E3CT345)

NOS

understandings

The “Nature of Science” consists of those seldom‐
taught but very important features of working

science. This includes its realm and limits, its

levels of uncertainty, its biases, its social

aspects, and the reasons for its reliability. The

Nature of Science helps limit the many misuses,

misrepresentations, and abuses of science.

(partially aligned, E3‐T303)

The nature of science is inquiry. (not

aligned, E2CT225)

The Nature of Science is an important part of

science in the real world that allows us to make

sense of the world around us. It involves

Science is an attempt to explain natural or

unnatural phenomena in the world or

universe. (not aligned, E2CT202)

(Continues)
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And then we were given an opportunity to assess others who were going through the teaching opportunity,

so we got to see it from three different aspects, which really helped give more dimension to the learning

process rather than just being in a direct instruction type role. (E3‐T370, Interview).

This participant specifically mentioned the opportunity to observe other teachers teaching in

the camp setting, and practice teaching in the camp setting as facilitating her understanding of PBL, inquiry,

and NOS.

Another participant commented on the collaborative nature and coherent context as beneficial to their

learning:

The PD experience provides opportunities for participants to interact or serve as peer resources. What the

participants learn in the PD transfers to behaviors that are observable in the classroom. PD in which

participants are given the opportunity to learn new classroom practices in the contexts within which those

practices will be used is far more effective than more traditional methods of PD. In other words, PD can be

as effective in changing teacher behaviors as contextual teaching in the classroom is in improving student

behaviors. (E2‐T274, Year‐end PINCK Survey)

TABLE 6 (Continued)

Construct Year‐end treatmenta Year‐end controla

understanding and communicating the following

tenets through our scientific inquiries: Scientific

ideas are both durable and subject to change;

we have the confidence that scientific

knowledge is reasonably long‐lasting; however,

it may change or be modified as we learn more.

Science demands evidence; we demand

explanations (part of human nature) but these

explanations must be based on evidence that is

testable, and observable. The natural world is

understandable; much of what we do in

scientific learning involves understanding or

answering questions about real‐world

phenomena. Science avoids bias, as much as

humanly possible; we are keenly aware of our

ability for bias and seek to work in a realm that

remains objective rather than subjective.

Science is a blend of logic and imagination.

Science is a social activity, as we discuss, debate,

share ideas, and collaborate to find answers to

our questions. (fully aligned, E2‐T241)

I really don’t know what nature of science

means. Maybe it means research,

investigation, and models? Or perhaps

how science works? (not aligned,

E3CT346)

NOS instruction During a lesson emphasizing the nature of

science, the students are acting like, and

thinking like scientists! (implicit, E2‐T251)

teachers: exposing students to science all

around in nature students: learning from

experiences (implicit, E2CT201)

For an explicit NOS lesson/activity, you pull in

the tenets which have been introduced … If you

are emphasizing science demands evidence and

is social and based on observation and

inference. You would stop at points of the lab

and discuss those tenets explicitly when

applicable. (explicit, E2‐T263)

Discussing how the world around us

works and all the ways that the world is

connected (implicit, E3CT334)

I’m not too familiar with this term and

don’t exactly know. (implicit, E3CT325)

Abbreviations: NOS, nature of science; PBL, problem‐based learning.
aThese exemplars were selected on all year‐end survey responses to reflect the most typical participant responses for that

construct.

MAENG ET AL. | 341



Participants universally acknowledged the value of the sustained, on‐going PD model that emphasized active

learning through collective participation situated within a coherent context as contributing to their improved

understandings.

6.2 | Confidence in teaching PBL, inquiry, and NOS

In addition to improving understandings, results indicated participation in the PD also improved participants’

confidence in incorporating PBL, inquiry, and explicit NOS instruction (Table 7). Paired sample t tests indicated that

for all assessed indicators, treatment teams exhibited a statistically significant change in their confidence

implementing PBL, inquiry, and, NOS (ps < .05) pre‐PD to year‐end.
Teacher teams in the treatment group reported significantly greater confidence than their peers in the control

group for all constructs; when year‐end outcome group means were adjusted for premeasure scores, all ps < .001

(Table 8). Effect sizes were large (J. Cohen, 1988) and ranged from partial η2 = 0.478 for confidence integrating PBL

to partial η2 = 0.666 for confidence integrating explicit NOS instruction.

Several participants mentioned how participating in the PD changed their perspective of how to teach science

and how this developed their confidence in implementing the key constructs learned in the PD. For example, E3‐
T334 noted,

I now see science instruction as an active practice that doesn’t involve a warehouse of facts and knowledge.

[The PD] has driven me to be more invested in the act of exploration, and I hope my students adopt that

mindset in the coming school years. I now know how to develop a problem‐based unit and take the steps

necessary to plan it. (E3‐T334, Post‐PINCK Survey)

Participants repeatedly discussed how specific components of the PD were important in facilitating their

confidence in implementing reform‐based science instruction into their own practice. For example, one teacher

described how many of the effective characteristics of PD (active learning, collective participation, expert coaching)

of the PD facilitated her confidence:

I really enjoyed the camp and being able to practice what we were learning about, what we were taught, I

think that was crucial to be able to become more comfortable with what we were going to be doing in our

classroom this coming year. And I also liked the time we had to plan and plan with other teachers from

other areas in order to come up with a cohesive plan. (E3‐T337, Interview)

As the above example illustrates, implementing a PBL unit at camp not only provided participants with an

opportunity for active learning, but also a chance to get feedback on their teaching. Participants cited the time to

reflect and receive feedback as valuable because it increased learning and because time to reflect and material

resources are not typically features of other PD or teaching during the academic school year.

TABLE 7 Paired samples t tests for treatment teams’ pre‐/year‐end confidence

Paired indicator (pre‐/year‐end) Pre‐PD Year‐end PD t p

PBL activities 2.44 (0.74) 3.11 (0.94) 10.38 <0.001

Inquiry‐based activities 2.59 (0.80) 3.38 (0.97) 10.03 <0.001

Explicit NOS instruction 2.15 (0.85) 3.20 (1.1) 12.07 <0.001

Abbreviations: NOS, nature of science; PBL, problem‐based learning; PD, professional development.
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Another participant pointed out the collective participation in the PD facilitated her confidence in implementing

what she learned into her own instruction:

I LOVE that we have had the chance to work with another teacher from our school and to build that team‐

type relationship. [This PD] is the ONLY experience that has taught me a new technique, let me practice

that new technique, let me reflect on my implementation of that new technique and supported me to this

extent. I feel as with all of the support and materials and experiences given it is literally IMPOSSIBLE to fail

in implementation. (E3‐T385, Year‐end PINCK Survey)

Like E3‐T385, many participants attributed their new confidence to the unique aspects of the PD, namely being

able to work with their colleagues and other teachers to plan and implement a PBL unit and having opportunities to

practice the teaching strategies they learned during the summer institute during the camp. The coherent,

contextualized nature of the PD appeared to facilitate teachers’ understandings and confidence in implementing

PBL, NOS, and inquiry.

6.3 | Classroom practice

Participants overwhelmingly indicated they intended to implement what they learned (M = 4.92 on 5‐point Likert
scale, SD = 0.30; post‐PD PINCK Survey). Participants discussed how they perceived they could translate what they

learned during the summer institute into their own classroom instruction. One teacher explained, “Even during

units that are not my PBL that I designed [during the summer], I will be incorporating the same guiding principles

and ideas throughout the entire year.” (E2‐T239, Post‐PINCK Survey). Another noted, “I have participated in other

science PD but it was not nearly as immediately applicable to my classroom. I can see how what I learned will

impact my teaching of not just science, but all subjects” (E3‐T318, Post‐PINCK Survey).

Analysis of classroom observations with the modified CETP‐COP instrument provided evidence of the extent to

which participants’ actually incorporated PBL, inquiry, and NOS into instruction. Significantly more treatment

teacher teams incorporated PBL and NOS than control teacher teams across all observation windows

(Table 9). Integration of inquiry was also statistically different, favoring integration by treatment teacher teams

for inquiry during the first, second, and final observation windows.

Classroom observation data were used to qualitatively understand the types of science content taught within

PBL units and how teachers incorporated inquiry and explicit NOS instruction within these units. Science content

embedded within PBL units included ecosystems, sound, energy transfer, human impact on the environment, and

weather. Classroom vignettes (Supporting Information Materials Supplement B), derived from classroom

observation data exemplify how teachers incorporated inquiry and NOS into PBL units following participation in

the PD. For example, in Vignette 1, which took place in a 4th‐grade class, the teacher explicitly linked the NOS

TABLE 8 School team confidence in incorporating key constructs

Year‐end group means

Construct Treatment (n = 50) Control (n =38) p Partial η2

PBL activities 3.62 (0.68) 2.40 (0.81) <0.001 0.478

Inquiry‐based activities 3.01 (0.61) 2.63 (0.91) <0.001 0.494

Explicit NOS instruction 3.93 (0.54) 2.17 (0.79) <0.001 0.666

Note: Likert‐scale ranges from 1 = not confident to 5 = very confident. Adjusted = Year end (delayed post) means adjusted for

baseline premeasure.

Abbreviations: NOS, nature of science; PBL, problem‐based learning.
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tenets she wanted to emphasize specific activities in which students engaged throughout the PBL unit. In addition,

she incorporated opportunities for students to conduct experiments via online simulations to develop the

knowledge necessary to answer the overarching question that served as the unit scenario.

Similarly, the learning objectives for a 5th‐grade science PBL unit were to understand the characteristics and

interactions of moving objects by investigating and designing a method to speed up or slow down the rate a car

travels over different surfaces (E3‐T368, Observation 4 Context). This teacher also incorporated opportunities for

inquiry through data collection and analysis into the unit. She pointed out to students that they were acting like

scientists because they were working together in groups, one of the few NOS ideas teachers were observed

teaching explicitly during classroom instruction. However, classroom observation contextual information also

indicated the teacher perceived the unit as teaching students the NOS ideas that (a) science is a blend of logic and

imagination and that students had to use both during their investigation as well as that (b) scientific knowledge is

the project of both observation and inference in that students had to observe the effect of the raceway they

created on their cars and then infer how these results would relate to the movement of real cars. There is no

evidence; however, the teacher explicitly linked these NOS ideas to what students did during the observed lesson

(Supporting Information Materials Supplement B—Classroom Vignette 2).

Many participants’ perceived the coaching component as a valuable aspect of the PD that supported their

confidence in implementing what they learned during the summer into instruction. For example, participant E3‐
T348 described her interactions with her coach:

From her very first visit to our classroom, [my coach] became a part of our community. She was always

extremely helpful and was very flexible. She brought a wealth of knowledge and experience to this position,

and she offered ideas in a very professional way. She was often very affirming, with both verbal and non‐

verbal ways. (E3‐T348, Year‐end PINCK Survey)

Another echoed the support provided by her coach:

She even came to our school before school started. She helped us plan our lessons for science at times and

offered us suggestions on how to keep our students engaged. When she wasn’t at our school, she was busy

helping us by sending us great resources to use for each unit we taught. (E3‐T332, Year‐end PINCK Survey)

As evidenced by the above comments, participants’ perceived coaches as supporting the transfer of what they

learned during the summer institute into effective implementation in their own classroom.

6.4 | Relationships between confidence, understandings, and practice

Multiple regression was used to determine if understanding, confidence, and condition significantly predicted the

implementation of PBL, inquiry, and NOS. For PBL implementation, the results of the regression indicated that the

model containing condition, postsummer institute PBL confidence, and postsummer institute PBL understanding

explained 51% of the variance (R2 = .51; F (3, 88) = 32.9; p < .001). In the model, the only condition was statistically

significant (β = .781; p < .001). Condition uniquely explained 41% of the variance in PBL implementation. For inquiry

implementation, regression results indicated that the model containing condition, postsummer institute inquiry

confidence, and postsummer institute inquiry understanding was not significant (R2 = .067, F (3, 88) = 3.18;

p = .028). The overall model explained 6.7% of the variance in inquiry implementation. In the model, condition

explained 9% of the variance in inquiry implementation (β = .31; p = .004). For NOS implementation, the results of

the regression indicated that the model containing condition, postsummer institute NOS confidence, and

postsummer institute NOS understanding explained 40% of the variance (R2 = .40; F (3, 87) = 16.4; p < .001). In the
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model, the only condition was statistically significant (β = .67; p < .001). Condition explained 16% of the variance in

NOS implementation. Neither postsummer institute understanding nor confidence significantly predicted

classroom implementation in any model.

7 | DISCUSSION

This RCT explored the effectiveness of the PD in improving elementary science teachers’ knowledge of and

confidence in implementing PBL, inquiry, and NOS into their classroom instruction. The results of this investigation

make several important contributions to the literature. First, the RCT research design allowed us to measure

statistically significant positive changes in treatment teachers’ understandings, confidence, and practices related to

PBL, inquiry, and NOS and attribute these to the PD. Second, teachers converged on several components of the PD

they perceived as promoting these changes, which were aligned with the components of effective PD cited

elsewhere in the literature as important in supporting teacher change. Each of these contributions is described

below.

7.1 | Changes in understanding, confidence, and instructional practice

7.1.1 | Understanding

Participants made significant gains in their understanding of NOS, inquiry, and PBL instruction following their

participation in the PD and their understandings were significantly greater than those of control group teachers.

Treatment teachers’ knowledge of PBL improved the greatest of the three constructs pre‐ to postsummer institute

and these were retained at the end of the year. Similarly, desired shifts in treatment teachers’ understandings of

inquiry occurred pre‐ to year‐end and were significantly greater than those of control teacher teams. Research

suggests many science teachers do not have accurate conceptions of inquiry (e.g., Johnson, 2006, 2007). For

example, some teachers conflate inquiry instruction with hands‐on instruction and teaching inquiry with teaching

NOS and process skills (Crawford, 2000; NRC, 2000). However, the PD that served as the intervention of the

present study appeared to be effective in improving teachers’ knowledge of PBL and inquiry.

Participants expressed moderate knowledge about teaching NOS after PD; however, they retained their

conception that students would learn about NOS through implicit approaches. This finding is consistent with a large

body of literature that teachers do not incorporate explicit NOS instruction (e.g., Bell et al., 1998, 2003; Lederman

et al., 2012). Further, participants in the present study learned about NOS instruction through both contextualized

and noncontextualized activities such as an investigation in which teachers made observations and inferences

about a rock then gathered more evidence and discussed NOS ideas (creativity, empirical evidence, and tentative)

that they used during the investigation. Thus, the findings of the present study support Clough’s (2006) assertion,

that the implementation of explicit NOS instruction should occur along a continuum from noncontextualized to

highly contextualized. They also contribute to the ongoing debate concerned with the most effective context to

facilitate teachers’ capacity to learn and transfer their NOS knowledge to their own classroom instruction (e.g., Bell

et al., 2016; Bell, Matkins, & Gansneder, 2011; Herman, Clough, & Olson, 2013).

While many studies espouse the success of PD programs that specifically target teachers’ inquiry (e.g., Kanter &

Konstantopoulos, 2010; Lotter et al., 2007) or NOS understandings (e.g., Akerson & Hanuscin, 2007; Akerson,

Cullen, & Hanson, 2009), most of these investigations use a quasi‐experimental (e.g., use a pre‐/postintervention)
design or are qualitative in nature. This study supports the findings of these previous investigations through a

mixed‐methods RCT. Further, it extends these studies through an exploration of not only inquiry and NOS, but also

teachers’ understandings of PBL following a PD that embedded inquiry and NOS within a PBL context.
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7.1.2 | Confidence

Participants’ confidence in targeted reform‐based practices increased significantly pre‐ to year‐end and their

confidence was greater than those teachers in the control group. Similar findings exist for other investigations of

PD to support inquiry (e.g., Brand & Moore, 2011; Duran, Ballone‐Duran, Haney, & Beltyukova, 2009; Lakshmanan

et al., 2011; Sandholtz & Ringstaff, 2014). However, the majority of these studies employ a qualitative or quasi‐
experimental design and focus on preservice teachers or secondary teachers. Thus, the results of the present

investigation substantiate these findings among elementary teachers. Notably, the present investigation also

extends the body of literature on PD to support the development of science teachers’ confidence by exploring their

confidence in developing and implementing NOS and PBL instruction.

7.1.3 | Instructional practices

The present study explored participants’ reform‐based practices during four observations of windows spread

throughout the academic year. While approximately 50% of participants were observed integrating the targeted

reform‐based practices, this is likely an underestimate, as some may have integrated these pedagogical approaches

outside the observation windows. Despite this potential limitation of the study, overall, results indicated teacher

teams who participated in the PD integrated targeted reform‐based practices (i.e., NOS, inquiry, and PBL)

significantly more frequently than their control group counterparts across all observation windows except inquiry

during the first spring observation window. While most studies of the effectiveness of PD employ teacher self‐
report data rather than classroom observations of teachers’ instruction (Roth et al., 2011), the present study

extends these by using a validated observation protocol to record instances of reform‐based instruction.

Previous research suggests effective NOS instruction does not come easily for most teachers (e.g., Akerson &

Abd‐El‐Khalick, 2003; Bell et al., 1998; Lederman, 2007; Lederman et al., 2012). In the present investigation,

treatment teachers incorporated significantly more explicit NOS into their instruction than control teachers across

all four observation points. In fact, for all time periods except the late spring window, the mean number of teachers

on a treatment team who implemented NOS instruction was more than half of the teachers on the team. This

suggests that not only were teachers integrating explicit NOS into instruction to a substantive extent, but they

were doing it more consistently across the year than some might expect. Often, NOS is taught near the beginning of

the year during instruction on scientific methodology. Results indicated treatment teacher teams’ implemented

inquiry to a greater extent than control teacher teams across all observation windows except the first spring

window. These findings extend previous studies, most of which do not look at snapshots of teachers’ instruction

over the entire academic year, but often observe teachers during an instructional unit or abbreviated timeframe.

Classroom observations revealed teachers incorporated PBL more frequently in the fall semester, in closer

proximity to when they learned it, than in the spring, whereas participants tended to incorporate NOS and inquiry

more consistently throughout the year. The modest improvements in PBL instruction are not unexpected for

several reasons. Inquiry instruction was more familiar to participants and is a more straightforward pedagogical

approach to implement than developing and implementing and entire PBL unit. Designing and implementing PBL

into instruction is a complex process. It relies heavily upon students’ exploration and synthesis of multiple science

concepts within a coherent instructional unit to solve a problem with multiple possible solutions (Center of

Excellence in Leadership of Learning, 2009; Sterling, 2007; Thomas, 2000). Thus, the process of designing and

implementing PBL may be especially difficult for elementary teachers who may not be science content experts as

previous research suggests some degree of content knowledge expertise may be necessary but insufficient to

facilitate teachers’ effective science instruction (Abell, 2007).

Although significantly less than those teachers in the control group, many of the treatment participants’ still

expressed the nonaligned understanding that effective NOS instruction could be implicit following the PD. Thus, a
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disconnect between teachers’ understanding of explicit NOS instruction and their explicit NOS instructional

practices appeared to exist. This finding supports previous research that teachers’ practices may not reflect their

understandings about NOS (e.g., Bell, Lederman, & Abd‐El‐Khalick, 2000; Lederman, 2007; Schwartz & Lederman,

2002). However, those studies focused on preservice and in‐service secondary teachers and found that while

teachers’ accurate conceptions of NOS were present, their instructional practices did not include extensive explicit

NOS instruction. Thus, our findings for elementary teachers warrant further exploration.

Our multiple regression results indicated that participation in the PD rather than confidence and understanding

contributed to teachers’ classroom implementation of PBL and NOS. This is an important finding in that it indicates

that PD may mediate the relationship between confidence and understandings on implementation, and explain

discrepancies in the results of previous investigations. Some scholars argue there is a clear connection between

understandings and practice (e.g., Brand & Moore, 2011; Goodhew & Robertson, 2017; Lakshmanan et al., 2011),

while others have found this relationship to be complex and that understandings do not directly transfer into

classroom practice (Beyer & Davis, 2008; Lederman, 1999). Further, a number of studies indicate elementary

teachers’ confidence influences their reform‐based inquiry and NOS instructional practices (e.g., Lakshmanan et al.,

2011; Ramey‐Gassert et al., 1996; Sandholtz & Ringstaff, 2014). The relationship between understanding and

practice is well‐documented for inquiry and indicates that teachers’ understandings and confidence positively

influence their practices (e.g., Brand & Moore, 2011; Lakshmanan et al., 2011), yet the relationship between

teachers’ understandings of PBL and their classroom implementation of PBL has not been well‐studied. Given the

results of the present study, the complexity of these pathways as well as the potential role PD plays in mediating

classroom implementation with regard to understandings and confidence warrants further investigation.

7.2 | Efficacy of embedded components of effective PD

Overall, the PD appeared to contribute to the changes in participants’ understandings, confidence, and practices.

For many participants, active learning opportunities incorporating inquiry and NOS instruction, opportunities to

practice PBL, NOS, and inquiry instruction in the context of camp before implementing these constructs in their

own classrooms facilitated transfer to their own instruction. Participants also cited collaborating with peers when

designing instruction and receiving feedback from coaches and instructors as encouraging the integration of

reform‐based practices into their instruction. The incorporation of these active learning opportunities and the

requirement of collective participation appeared to promote participants’ transfer of what they learned in the PD

into their own reform‐based instruction.

The summer institute constituted only one component of the PD experience. Participants were provided

support throughout the academic year through follow‐up sessions and coaching, which provided sustained, on‐
going, coherent PD with expert coaching. Follow‐up and coaching sessions were designed to reinforce what

participants initially experienced during the summer institute and promote transfer to the classroom environment.

Participants perceived these components to be important in supporting their improved practices. These

longitudinal and contextualized features of the PD are often cited as essential features of effective PD (e.g.,

Desimone, 2009; Johnson et al., 2007; Supovitz & Turner, 2000), yet are often costly to implement.

Results of the present study support the inclusion of these features into PD for elementary science teachers as

participants’ retained their understandings of PBL, inquiry, and NOS instruction across the year. In addition,

participants integrated these constructs relatively consistently across the year, with slightly higher integration in

the fall. Therefore, the results of the present study provide further support for the importance of taking a situated

approach to the design of PD for elementary teachers (e.g., Voogt et al., 2015). It is possible that the components of

effective PD (e.g., longitudinal, contextualized, opportunities for active learning, collective participation, expert

coaching) embedded within the PD that served as the intervention facilitated participants in overcoming the

barriers elementary teachers face when implementing reform‐based practices in their instruction. Ascertaining the
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extent to which each of the components contributed to participants’ understanding, confidence, and practice is an

area for future research.

7.3 | Future research

This investigation addressed the effect of a PD program on teachers’ knowledge and confidence as well as how they

translated that understanding into their classroom practices through an RCT. This investigation also provides a

number of directions for future research. First, research suggests a teacher’s disciplinary content knowledge may

impact their confidence and practice (e.g., Abell & Roth, 1992; Akerson, 2005; Capps & Crawford, 2013; Lee, 2003).

However, this study did not focus on this aspect of the participants’ background. Given the intensity of data

collection in the present investigation and the desire not to overburden teachers, the present study did not include

a specific assessment of teacher content knowledge before or after the PD. Future studies may seek to delineate

specific connections to teachers’ content knowledge and outcomes. Second, the definitions of PBL, inquiry, and

NOS used during the PD were intended to capture the main ideas of the construct but were not comprehensive.

This decision to include only the most critical aspects was made because the PD included a lot of material in a

limited amount of time. Future studies might choose to investigate in more detail the impact of PD on the individual

constructs on knowledge, confidence, practice, and student achievement; however, doing so may mitigate any

advantage of the synergistic approach employed in the PD in this investigation. Importantly, previous research

suggests that reform‐based practices including PBL, inquiry, and NOS instruction have the potential to improve

student achievement (e.g., Bransford, Brown, & Cocking, 2000; Cleminson, 1990; Peters, 2012; Songer & Linn,

1991) for all students. Thus, future studies should investigate the impact of the PD on student achievement and the

teacher level factors that moderate this relationship.

8 | CONCLUSION

The reform‐based pedagogies presented in the PD aimed to shift science instruction beyond a content‐only focus to
address the important goal of enhancing students’ scientific literacy. Inquiry lessons overlap with many aspects of

scientific literacy such as having students evaluate evidence, formulate scientific explanations and engage in

scientific discourse, while NOS lessons help students reflect on how these practices connect to scientific

epistemology. The incorporation of both inquiry and NOS instruction into PBL units has the potential to make

science more contextualized and meaningful to students.

Overall, the positive improvements in teacher understanding, confidence, and practices related to PBL, inquiry,

and NOS are heartening given the significant, numerous barriers to reform‐based instruction documented in the

literature (e.g., Arora et al., 2000; Bauer & Kenton, 2005; Johnson, 2006, 2007; Lakshmanan et al., 2011; Lederman,

2007; Sandholtz & Ringstaff, 2014; Supovitz & Turner, 2000). Teachers specifically attributed opportunities for

active learning, practice, collaboration, and receiving feedback from coaches and instructors embedded within the

PD as contributing to their improved understandings, confidence, and instruction. It is possible that these

components of the PD facilitated teachers’ overcoming documented barriers to implement targeted reform‐based
practices. Thus, in light of the positive results reported here, designers of PD should specifically consider the

inclusion of these features into PD to support elementary teachers’ reform‐based science instruction.
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