286 research outputs found

    The mediating effect of gaming motivation between psychiatric symptoms and problematic online gaming: an online survey

    Get PDF
    Background: The rapid expansion of online video gaming as a leisure time activity has led to the appearance of problematic online gaming (POG). According to the literature, POG is associated with different psychiatric symptoms (eg, depression, anxiety) and with specific gaming motives (ie, escape, achievement). Based on studies of alcohol use that suggest a mediator role of drinking motives between distal influences (eg, trauma symptoms) and drinking problems, this study examined the assumption that there is an indirect link between psychiatric distress and POG via the mediation of gaming motives. Furthermore, it was also assumed that there was a moderator effect of gender and game type preference based on the important role gender plays in POG and the structural differences between different game types

    On packing spanning arborescences with matroid constraint

    Get PDF
    Let D = (V + s, A) be a digraph with a designated root vertex S. Edmonds’ seminal result (see J. Edmonds [4]) implies that D has a packing of k spanning s-arborescences if and only if D has a packing of k (s, t)-paths for all t ∈ V, where a packing means arc-disjoint subgraphs. Let M be a matroid on the set of arcs leaving S. A packing of (s,t) -paths is called M-based if their arcs leaving S form a base of M while a packing of s-arborescences is called M -based if, for all t ∈ V, the packing of (s, t) -paths provided by the arborescences is M -based. Durand de Gevigney, Nguyen, and Szigeti proved in [3] that D has an M-based packing of s -arborescences if and only if D has an M-based packing of (s,t) -paths for all t ∈ V. Bérczi and Frank conjectured that this statement can be strengthened in the sense of Edmonds’ theorem such that each S -arborescence is required to be spanning. Specifically, they conjectured that D has an M -based packing of spanning S -arborescences if and only if D has an M -based packing of (s,t) -paths for all t ∈ V. In this paper we disprove this conjecture in its general form and we prove that the corresponding decision problem is NP-complete. We also prove that the conjecture holds for several fundamental classes of matroids, such as graphic matroids and transversal matroids. For all the results presented in this paper, the undirected counterpart also holds

    Preventing problematic internet use during the COVID-19 pandemic: Consensus guidance

    Get PDF
    As a response to the COVID-19 pandemic, many governments have introduced steps such as spatial distancing and "staying at home" to curb its spread and impact. The fear resulting from the disease, the lockdown' situation, high levels of uncertainty regarding the future, and financial insecurity raise the level of stress, anxiety, and depression experienced by people all around the world. Psychoactive substances and other reinforcing behaviors (e.g., gambling, video gaming, watching pornography) are often used to reduce stress and anxiety and/or to alleviate depressed mood. The tendency to use such substances and engage in such behaviors in an excessive manner as putative coping strategies in crises like the COVID-19 pandemic is considerable. Moreover, the importance of information and communications technology (ICT) is even higher in the present crisis than usual. ICT has been crudal in keeping parts of the economy going, allowing large groups of people to work and study from home, enhancing social connectedness, providing greatly needed entertainment, etc. Although for the vast majority ICT use is adaptive and should not be pathologized, a subgroup of vulnerable individuals are at risk of developing problematic usage patterns. The present consensus guidance discusses these risks and makes some practical recommendations that may help diminish them

    Distance and the pattern of intra-European trade

    Get PDF
    Given an undirected graph G = (V, E) and subset of terminals T ⊆ V, the element-connectivity κ ′ G (u, v) of two terminals u, v ∈ T is the maximum number of u-v paths that are pairwise disjoint in both edges and non-terminals V \ T (the paths need not be disjoint in terminals). Element-connectivity is more general than edge-connectivity and less general than vertex-connectivity. Hind and Oellermann [21] gave a graph reduction step that preserves the global element-connectivity of the graph. We show that this step also preserves local connectivity, that is, all the pairwise element-connectivities of the terminals. We give two applications of this reduction step to connectivity and network design problems. • Given a graph G and disjoint terminal sets T1, T2,..., Tm, we seek a maximum number of elementdisjoint Steiner forests where each forest connects each Ti. We prove that if each Ti is k element k connected then there exist Ω( log hlog m) element-disjoint Steiner forests, where h = | i Ti|. If G is planar (or more generally, has fixed genus), we show that there exist Ω(k) Steiner forests. Our proofs are constructive, giving poly-time algorithms to find these forests; these are the first non-trivial algorithms for packing element-disjoint Steiner Forests. • We give a very short and intuitive proof of a spider-decomposition theorem of Chuzhoy and Khanna [12] in the context of the single-sink k-vertex-connectivity problem; this yields a simple and alternative analysis of an O(k log n) approximation. Our results highlight the effectiveness of the element-connectivity reduction step; we believe it will find more applications in the future

    Stable marriage and roommates problems with restricted edges: complexity and approximability

    Get PDF
    In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs. Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs. Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs

    Beating the 2-approximation factor for Global Bicut

    Get PDF
    corecore