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ALGEBRAIC GEOMETRIC COMPARISON OF PROBABILITY

DISTRIBUTIONS

FRANZ J. KIRÁLY1, PAUL VON BÜNAU2, FRANK C. MEINECKE2, DUNCAN A. J. BLYTHE3,
AND KLAUS-ROBERT MÜLLER4

Abstract. We propose a novel algebraic framework for treating probability distributions
represented by their cumulants such as the mean and covariance matrix. As an example,
we consider the unsupervised learning problem of finding the subspace on which several
probability distributions agree. Instead of minimizing an objective function involving the
estimated cumulants, we show that by treating the cumulants as elements of the polynomial
ring we can directly solve the problem, at a lower computational cost and with higher accu-
racy. Moreover, the algebraic viewpoint on probability distributions allows us to invoke the
theory of Algebraic Geometry, which we demonstrate in a compact proof for an identifiability
criterion.

1. Introduction

Comparing high dimensional probability distributions is a general problem in Machine
Learning, which occurs in two-sample testing (e.g. [16, 12]), projection pursuit (e.g. [8]), di-
mensionality reduction and feature selection (e.g. [26]). Probability densities are uniquely
determined by their cumulants which are naturally interpreted as coefficients of homogeneous
multivariate polynomials. Representing probability densities in terms of cumulants is a stan-
dard technique in learning algorithms. For example, in Fisher Discriminant Analysis [7], the
class conditional distributions are approximated by their first two cumulants.

In this paper, we take this viewpoint further and work explicitly with polynomials. That
is, we treat estimated cumulants not as constants in an objective function, but as objects
that we manipulate algebraically in order to find the optimal solution. As an example, we
consider the problem of finding the linear subspace on which several probability distributions
are identical: given D-variate random variables X1, . . . , Xm, we want to find the linear map
P ∈ Rd×D such that the projected random variables have the same probability distribution,

PX1 ∼ · · · ∼ PXm.

This amounts to finding the directions on which all projected cumulants agree if the Xi have
smooth densities. For the first cumulant, the mean, the projection is readily available as the
solution of a set of linear equations. For higher order cumulants, we need to solve polynomial

1Machine Learning Group, Berlin Institute of Technology (TU Berlin), and Discrete Geom-
etry Group, Institute of Mathematics, FU Berlin

2Machine Learning Group, Berlin Institute of Technology (TU Berlin)
3Machine Learning Group, Berlin Institute of Technology (TU Berlin), and Bernstein Cen-

ter for Computational Neuroscience (BCCN), Berlin
4Machine Learning Group, Berlin Institute of Technology (TU Berlin), and IPAM, UCLA,

Los Angeles, USA
E-mail addresses: franz.j.kiraly@tu-berlin.de, paul.buenau@tu-berlin.de,

frank.meinecke@tu-berlin.de, duncan.blythe@bccn-berlin.de, klaus-robert.mueller@tu-berlin.de.

1
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equations of higher degree. We present the first algorithm that solves this problem explicitly
for arbitrary degree, and show how Algebraic Geometry can applied to prove properties about
it.
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Figure 1. Illustration of the optimization approach. The left panel shows
the contour plots of three sample covariance matrices. The black line is the true
one-dimensional subspace on which the projected variances are exactly equal,
the magenta line corresponds to a local minimum of the objective function.
The right panel shows the value of the objective function over all possible
one-dimensional subspaces, parameterized by the angle α to the horizontal
axis.

To clarify the gist of our novel framework, let us consider a stylized example. In order
to solve a learning problem, the conventional approach in Machine Learning is to formulate
an objective function, e.g. the log likelihood of the data or the empirical risk. Instead of
minimizing an objective function that involves the polynomials, we consider the polynomials
as objects in their own right and then solve the problem by algebraic manipulations. The
advantage of the algebraic approach is that it captures the inherent structure of the problem,
which is in general difficult to model in an optimization approach. In other words, the
algebraic approach actually solves the problem, whereas optimization searches the space of
possible solutions guided by an objective function that is minimal at the desired solution,
but can give poor directions outside of the neighborhood around its global minimum. Let us
consider the problem where we would like to find the direction v ∈ R2 on which several sample
covariance matrices Σ1, . . . ,Σm ⊂ R2×2 are equal. The usual ansatz would be to formulate
an optimization problem such as

v∗ = argmin
‖v‖=1

∑
1≤i,j≤m

(
v>Σiv − v>Σjv

)2
.(1)

This objective function measures the deviation from equality for all pairs of covariance matri-
ces; it is zero if and only if all projected covariances are equal and positive otherwise. Figure 1
shows an example with three covariance matrices (left panel) and the value of the objective

function for all possible projections v =
[
cos(α) sin(α)

]>
. The solution to this non-convex

optimization problem can be found using a gradient-based search procedure, which may yield
one of the local minima (e.g. the magenta line in Figure 1) depending on the initialization.
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However, the natural representation of this problem is not in terms of an objective function,
but rather a system of equations to be solved for v, namely

v>Σ1v = · · · = v>Σmv.(2)

In fact, by going from an algebraic description of the set of solutions to a formulation as an
optimization problem in Equation 1, we lose important structure. In the case where there is
an exact solution, it can be attained explicitly with algebraic manipulations. However, when
we estimate a covariance matrix from finite or noisy samples, there exists no exact solution
in general. Therefore we present an algorithm which combines the statistical treatment of
uncertainty in the coefficients of polynomials with the exactness of algebraic computations to
obtain a consistent estimator for v that is computationally efficient.

It is important to note that the following algebraic approach is not limited to this particular
learning task. In fact, it is applicable whenever a set of solutions can be described in terms of
a set of polynomial equations, which is a rather general setting. For example, we could use a
similar strategy to find a subspace on which the projected probability distribution has another
property that can be described in terms of cumulants, e.g. independence between variables.
Moreover, an algebraic approach may also be useful in solving certain optimization problems,
as the set of extrema of a polynomial objective function can be described by the vanishing
set of its gradient. The algebraic viewpoint also allows a novel interpretation of algorithms
operating in the feature space associated with the polynomial kernel. We would therefore
argue that methods from Computational Algebra and Algebraic Geometry are useful for the
wider Machine Learning community.

Figure 2. Representation of the problem: the left panel shows sample co-
variance matrices Σ1 and Σ2 with the desired projection v. In the middle
panel, this projection is defined as the solution to a quadratic polynomial.
This polynomial is embedded in the vector space of coefficients spanned by
the monomials X2, Y 2 and XY shown in the right panel.

Let us first of all explain the representation over which we compute. We will proceed in
the three steps illustrated in Figure 2, from the geometric interpretation of sample covariance
matrices in data space (left panel), to the quadratic equation defining the projection v (middle
panel), to the representation of the quadratic equation as a coefficient vector (right panel). To
start with, we consider the Equation 2 as a set of homogeneous quadratic equations defined
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by

v>(Σi − Σj)v = 0 ∀ 1 ≤ i, j ≤ m,(3)

where we interpret the components of v as variables, v =
[
X Y

]>
. The solution to these

equations is the direction in R2 on which the projected variance is equal over all covariance
matrices. Each of these equations corresponds to a quadratic polynomial in the variables X
and Y ,

qij = v>(Σi − Σj)v

= v>
[
a11 a12

a21 a22

]
v

= a11X
2 + (a12 + a21)XY + a22Y

2,(4)

which we embed into the vector space of coefficients. The coordinate axis are the monomials
{X2, XY, Y 2}, i.e. the three independent entries in the Gram matrix (Σi − Σj). That is, the
polynomial in Equation 4 becomes the coefficient vector

~qij =
[
a11 a12 + a21 a22

]>
.

The motivation for the vector space interpretation is that every linear combination of the
Equations 3 is also a characterization of the set of solutions: this will allow us to find a
particular set of equations by linear combination, from which we can directly obtain the
solution. Note, however, that the vector space representation does not give us all equations
which equivalently describe the solution: we can also multiply with arbitrary polynomials.
However, for the algorithm that we present here, linear combinations of polynomials are
sufficient.

Figure 3. Illustration of the algebraic algorithm. The left panel shows the
vector space of coefficients where the polynomials corresponding to the Equa-
tions 3 are considered as elements of the vector space shown as red points.
The middle panel shows the approximate 2-dimensional subspace (blue sur-
face) onto which we project the polynomials. The right panel shows the one-
dimensional intersection (orange line) of the approximate subspace with the
plane spanned by spanned by {XY, Y 2}. This subspace is spanned by the
polynomial Y (αX + βY ), so we can divide by the variable Y .
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Figure 3 illustrates how the algebraic algorithm works in the vector space of coefficients.
The polynomials Q = {qij}ni,j=1 span a space of constraints which defines the set of solutions.
The next step is to find a polynomial of a certain form that immediately reveals the solution.
One of these sets is the linear subspace spanned by the monomials {XY, Y 2}: any polynomial
in this span is divisible by Y . Our goal is now to find a polynomial which is contained in both
this subspace and the span of Q. Under mild assumptions, one can always find a polynomial
of this form, and it corresponds to an equation

Y (αX + βY ) = 0.(5)

Since this polynomial is in the span of Q, our solution v has to be a zero of this particular
polynomial: v2(αv1 +βv2) = 0. Moreover, we can assume1 that v2 6= 0, so that we can divide
out the variable Y to get the linear factor (αX + βY ),

0 = αX + βY =
[
α β

]
v.

Hence v =
[
−β α

]>
is the solution up to arbitrary scaling, which corresponds to the one-

dimensional subspace in Figure 3 (orange line, right panel). A more detailed treatment of
this example can be also found in Appendix A.

In the case where there exists a direction v on which the projected covariances are exactly
equal, the linear subspace spanned by the set of polynomials Q has dimension two, which cor-
responds to the degrees of freedom of possible covariance matrices that have fixed projection
on one direction. However, since in practice covariance matrices are estimated from finite
and noisy samples, the polynomials Q usually span the whole space, which means that there
exists only a trivial solution v = 0. This is the case for the polynomials pictured in the left
panel of Figure 3. Thus, in order to obtain an approximate solution, we first determine the
approximate two-dimensional span of Q using a standard least squares method as illustrated
in the middle panel. We can then find the intersection of the approximate two-dimensional
span of Q with the plane spanned by the monomials {XY, Y 2}. As we have seen in Equa-
tion 5, the polynomials in this span provide us with a unique solution for v up to scaling,
corresponding to the fact that the intersection has dimension one (see the right panel of Fig-
ure 3). Alternatively, we could have found the one-dimensional intersection with the span of
{XY,X2} and divided out the variable X. In fact, in the final algorithm we will find all such
intersections and combine the solutions in order to increase the accuracy. Note that we have
found this solution by solving a simple least-squares problem (second step, middle panel of
Figure 3). In contrast, the optimization approach (Figure 1) can require a large number of
iterations and may converge to a local minimum. A more detailed example of the algebraic
algorithm can be found in Appendix A.

The algebraic framework does not only allow us to construct efficient algorithms for working
with probability distributions, it also offers powerful tools to prove properties of algorithms
that operate with cumulants. For example, we can answer the following central question:
how many distinct data sets do we need such that the subspace with identical probability
distributions becomes uniquely identifiable? This depends on the number of dimensions and
the cumulants that we consider. Figure 4 illustrates the case where we are given only the
second order moment in two dimensions. Unless Σ1 − Σ2 is indefinite, there always exists a
direction on which two covariance matrices in two dimensions are equal (left panel of Figure 4)

1This is a consequence of the generative model for the observed polynomials which is introduced in Sec-
tion 2.1. In essence, we use the fact that our polynomials have no special property (apart from the existence
of a solution) with probability one.
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Figure 4. The left panel shows two sample covariance matrices in the plane,
along with a direction on which they are equal. In the right panel, a third
(green) covariance matrix does not have the same projected variance on the
black direction.

— irrespective of whether the probability distributions are actually equal. We therefore
need at least three covariance matrices (see right panel), or to consider other cumulants as
well. We derive a tight criterion on the necessary number of data sets depending on the
dimensionality and the cumulants under consideration. The proof hinges on viewing the
cumulants as polynomials in the Algebraic Geometry framework: the polynomials that define
the sought-after projection (e.g. Equations 3) generate an ideal in the polynomial ring which
corresponds to an algebraic set that contains all possible solutions. We can then show how
many independent polynomials are necessary so that the dimension of the linear part of
the algebraic set has smaller dimension in the generic case. We conjecture that these proof
techniques are also applicable to other scenarios where we aim to identify a property of a
probability distribution from its cumulants using algebraic methods.

Our work is not the first that applies geometric or algebraic methods to Machine Learning
or Statistics: for example, methods from group theory have already found their application
in Machine Learning, e.g. [18, 19]; there are also algebraic methods estimating structured
manifold models for data points as in [27] which are strongly related to polynomial kernel
PCA — a method which can itself be interpreted as a way of finding an approximate vanishing
set.

The field of Information Geometry interprets parameter spaces of probability distributions
as differentiable manifolds and studies them from an information-theoretical point of view
(see for example the standard book by [1]), with recent interpretations and improvements
stemming from the field of Algebraic Geometry by [29]. There is also the nascent field of
Algebraic Statistics which studies the parameter spaces of mainly discrete random variables
in terms of Commutative Algebra and Algebraic Geometry, see the recent overviews by [25,
chapter 8] and [5] or the book by [11] which also focuses on the interplay between Information
Geometry and Algebraic Statistics. These approaches have in common that the algebraic and
geometric concepts arise naturally when considering distributions in parameter space.

Given samples from a probability distribution, we may also consider algebraic structures
in the data space. Since the data are uncertain, the algebraic objects will also come with
an inherent uncertainty, unlike the exact manifolds in the case when we have an a-priori
family of probability distributions. Coping with uncertainties is one of the main interests of
the emerging fields of Approximative and Numerical Commutative Algebra, see the book by
[24] for an overview on numerical methods in algebra, and [20] for recent developments in
approximate techniques on noisy data. There exists a wide range of methods; however, to
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our knowledge, the link between approximate algebra and the representation of probability
distributions in terms of their cumulants has not been studied yet.

The remainder of this paper is organized as follows: in the next Section 2, we introduce the
algebraic view of probability distribution, rephrase our problem in terms of this framework
and investigate its identifiability. The algorithm for the exact case is presented in Section 3,
followed by the approximate version in Section 4. The results of our numerical simulations
and a comparison against Stationary Subspace Analysis (SSA) [28] can be found in Section 5.
In the last Section 6, we discuss our findings and point to future directions. The appendix
contains an example and proof details.

2. The Algebraic View on Probability Distributions

In this section we introduce the algebraic framework for dealing with probability distri-
butions. This requires basic concepts from complex Algebraic Geometry. A comprehensive
introduction to Algebraic Geometry with a view to computation can be found in the book [4].
In particular, we recommend to go through the Chapters 1 and 4.

In this section, we demonstrate the algebraic viewpoint of probability distributions on the
application that we study in this paper: finding the linear subspace on which probability
distributions are equal.

Problem 2.1. Let X1, . . . , Xm be a set of smooth D-variate random variables, having den-
sities. Find all linear maps P ∈ Rd×D such that the transformed random variables have the
same distribution,

PX1 ∼ · · · ∼ PXm.

In the first part of this section, we show how this problem can be formulated algebraically.
We will first of all review the relationship between the probability density function and its
cumulants, before we translate the cumulants into algebraic objects. Then we introduce the
theoretical underpinnings for the statistical treatment of polynomials arising from estimated
cumulants and prove conditions on identifiability for the problem addressed in this paper.

2.1. From Probability Distributions to Polynomials. The probability distribution of
every smooth real random variable X can be fully characterized in terms of its cumulants,
which are the tensor coefficients of the cumulant generating function. This representation has
the advantage that each cumulant provides a compact description of certain aspects of the
probability density function.

Definition 2.2. Let X be a D-variate random variable. Then by κn(X) ∈ RD(×n)
we denote

the n-th cumulant, which is a real tensor of degree n.

Let us introduce a useful shorthand notation for linearly transforming tensors.

Definition 2.3. Let A ∈ Cd×D be a matrix. For a tensor T ∈ RD(×n)
(i.e. a real tensor T of

degree n of dimension Dn = D ·D · · · · ·D) we will denote by A ◦ T the application of A to
T along all tensor dimensions, i.e.

(A ◦ T )i1...in =

D∑
j1=1

· · ·
D∑

jn=1

Ai1j1 · . . . ·AinjnTj1...jn .

The cumulants of a linearly transformed random variable are the multilinearly transformed
cumulants, which is a convenient property when one is looking for a certain linear subspace.
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Proposition 2.4. Let X be a real D-dimensional random variable and let A ∈ Rd×D be a
matrix. Then the cumulants of the transformed random variable AX are the transformed
cumulants,

κn(AX) = A ◦ κn(X).

We now want to formulate our problem in terms of cumulants. First of all, note that
PXi ∼ PXj if and only if vXi ∼ vXj for all row vectors v ∈ spanP>.

Problem 2.5. Find all d-dimensional linear subspaces in the set of vectors

S = {v ∈ RD
∣∣∣ v>X1 ∼ · · · ∼ v>Xm}

= {v ∈ RD
∣∣∣ v> ◦ κn(Xi) = v> ◦ κn(Xj), n ∈ N, 1 ≤ i, j ≤ m} .

Note that we are looking for linear subspaces in S, but that S itself is not a vector space
in general. Apart from the fact that S is homogeneous, i.e. λS = S for all λ ∈ R, there is no
additional structure that we utilize.

For the sake of clarity and because higher order cumulants are difficult to estimate reliably,
in the remainder of this paper we restrict ourselves to the first two cumulants. Note, however,
that one of the strengths of the algebraic framework is that the generalization to arbitrary
degree is straightforward. Throughout this paper, we will remark what would need to be
changed, and what the computational impact would be. Thus, from now on, we denote the
first two cumulants by µi = κ1(Xi) and Σi = κ2(Xi) respectively for all 1 ≤ i ≤ m. Moreover,
without loss of generality, we can shift the mean vectors and choose a basis such that the
random variable Xm has zero mean and unit covariance. Thus we arrive at the following
formulation.

Problem 2.6. Find all d-dimensional linear subspaces in

S = {v ∈ RD | v>(Σi − I)v = 0, v>µi = 0, 1 ≤ i ≤ (m− 1)}.

Note that S is the set of solutions to m − 1 quadratic and m − 1 linear equations in D
variables. Now it is only a formal step to arrive in the framework of Algebraic Geometry: let
us think of the left hand side of each of the quadratic and linear equations as polynomials
q1, . . . , qm−1 and f1, . . . , fm−1 in the variables T1, . . . , TD respectively,

qi =
[
T1 · · ·TD

]
◦ (Σi − I) and fi =

[
T1 · · ·TD

]
◦ µi,

which are elements of the polynomial ring over the complex numbers inD variables, C[T1, . . . , TD].
Note that in the introduction we have used X and Y to denote the variables in the polyno-
mials, we will now switch to T1, . . . , TD in order to avoid confusion with random variables.
Thus S can be rewritten in terms of polynomials,

S =
{
v ∈ RD | qi(v) = fi(v) = 0 ∀ 1 ≤ i ≤ m− 1} ,

which means that S is an algebraic set. In the following, we will consider the corresponding
complex vanishing set

S = V(q1, . . . , qm−1, f1, . . . , fm−1) ⊆ CD,
and keep in mind that eventually we will be interested in the real part of S. Working over the
complex numbers simplifies the theory and creates no algorithmic difficulties: when we start
with real cumulant polynomials, the solution will always be real. Finally, we can translate
our problem into the language of Algebraic Geometry.
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Problem 2.7. Find all d-dimensional linear subspaces in the algebraic set

S = V(q1, . . . , qm−1, f1, . . . , fm−1).

So far, this problem formulation does not include the assumption that a solution exists. In
order to prove properties about the problem and algorithms for solving it we need to assume
that there exist a d-dimensional linear subspace S′ ⊂ S. That is, we need to formulate a
generative model for our observed polynomials q1, . . . , qm−1, f1, . . . , fm−1. To that end, we
introduce the concept of a generic polynomial, which is a smooth polynomial-valued random
variable, conditioned on algebraic properties. Smoothness implies that a generic polynomial
has no algebraic properties except for those that are implied by the condition with positive
probability. An algebraic property is an event in the probability space of polynomials which
is defined by the common vanishing of a set of polynomial equations in the coefficients. For
example, the property that a quadratic polynomial is a square of linear polynomial is an
algebraic property, since it is described by the vanishing of the discriminants. In the context
of Problem 2.7, we will consider the observed polynomials as generic conditioned on the
algebraic property that they vanish on a fixed d-dimensional linear subspace S′.

One way to obtain generic polynomials is to replace coefficients with smooth, e.g. Gaussian
random variables. For example, a generic homogeneous quadric q ∈ C[T1, T2] is given by,

q = Z11T
2
1 + Z12T1T2 + Z22T

2
2 ,

where the coefficients Zij ∼ N (µij , σij) are independent Gaussian random variables with
arbitrary parameters. Apart from being homogeneous, there is no condition on q. If we want
to add the condition that q vanishes on the linear space defined by T1 = 0, we would instead
consider,

q = Z11T
2
1 + Z12T1T2.

A more detailed treatment of the concept of genericity can be found in Appendix B.1.
We are now ready to reformulate the genericity conditions on the random variablesX1, . . . , Xm

in the above framework. Namely, we have assumed that the Xi are general under the condi-
tion that they agree in the first two cumulants when projected onto some linear subspace S′.
Rephrased for the cumulants, Problems 2.1 and 2.7 become well-posed and can be formulated
as follows.

Problem 2.8. Let S′ be an unknown d-dimensional linear subspace in CD. Assume that
f1, . . . , fm−1 are generic homogenous linear polynomials, and q1, . . . , qm−1 are generic ho-
mogenous quadratic polynomials, all vanishing on S′. Find all d-dimensional linear subspaces
in the algebraic set

S = V(q1, . . . , qm−1, f1, . . . , fm−1).

As we have defined “generic” as an implicit “almost sure” statement, we are in fact looking
for an algorithm which gives the correct answer with probability one under our model as-
sumptions. Intuitively, S′ should be also the only d-dimensional linear subspace in S, which
is not immediately guaranteed from the problem description. Indeed this is true if m is large
enough, which is the topic of the next section.

2.2. Identifiability. In the last subsection, we have seen how to reformulate our initial
Problem 2.1 about comparison of cumulants as the completely algebraic Problem 2.8. We
can also reformulate identifiability of the true solution in the original problem in an algebraic
way: identifiability in Problem 2.1 means that the projection P can be uniquely computed
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from the probability distributions. Following the same reasoning we used to arrive at the
algebraic formulation in Problem 2.8, one concludes that identifiability is equivalent to the
fact that there exists a unique linear subspace in S.

Since identifiability is now a completely algebraic statement, it can be treated also in
algebraic terms. In Appendix B, we give an algebraic geometric criterion for identifiability of
the stationary subspace; we will sketch its derivation in the following.

The main ingredient is the fact that, intuitively spoken, every generic polynomials carries
one degree of freedom in terms of dimension, as for example the following result on generic
vector spaces shows:

Proposition 2.9. Let P be an algebraic property such that the polynomials with property P
form a vector space V . Let f1, . . . , fn ∈ C[T1, . . . TD] be generic polynomials satisfying P.
Then

rank span(f1, . . . , fn) = min(n, dimV ).

Proof. This is Proposition B.9 in the appendix. �

On the other hand, if the polynomials act as constraints, one can prove that each one
reduces the degrees of freedom in the solution by one:

Proposition 2.10. Let Z be a sub-vector space of CD. Let f1, . . . , fn be generic homogenous
polynomials in D variables (of fixed, but arbitrary degree each), vanishing on Z. Then one
can write

V(f1, . . . , fn) = Z ∪ U,
where U is an algebraic set with

dimU ≤ max(D − n, 0).

Proof. This follows from Corollary B.27 in the appendix. �

Proposition 2.10 can now be directly applied to Problem 2.8. It implies that S = S′ if
2(m − 1) ≥ D + 1, and that S′ is the maximal dimensional component of S if 2(m − 1) ≥
D − d+ 1. I.e. if we start with m random variables, then S′ can be identified uniquely if

2(m− 1) ≥ D − d+ 1

with classical algorithms from computational algebraic geometry.

Theorem 2.11. Let X1, . . . , Xm be random variables. Assume there exists a projection
P ∈ Rd×D such that the first two cumulants of all PX1, . . . , PXm agree and the cumulants
are generic under those conditions. Then the projection P is identifiable from the first two
cumulants alone if

m ≥ D − d+ 1

2
+ 1.

Proof. This is a direct consequence of Proposition B.31 in the appendix, applied to the re-
formulation given in Problem 2.8. It is obtained by applying Proposition 2.10 to the generic
forms vanishing on the fixed linear subspace S′, and using that S′ can be identified in S if it
is the biggest dimensional part. �

We have seen that identifiability means that there is an algorithm to compute P uniquely
when the cumulants are known, resp. to compute a unique S from the polynomials fi, qi. It is
now not difficult to see that an algorithm doing this can be made into a consistent estimator



ALGEBRAIC GEOMETRIC COMPARISON OF PROBABILITY DISTRIBUTIONS 11

when the cumulants are sample estimates. We will give an algorithm of this type in the
following parts of the paper.

3. An Algorithm for the Exact Case

In this section we present an algorithm for solving Problem 2.8, under the assumption
that the cumulants are known exactly. We will first fix notation and introduce important
algebraic concepts. In the previous section, we derived in Problem 2.8 an algebraic formu-
lation of our task: given generic quadratic polynomials q1, . . . , qm−1 and linear polynomials
f1, . . . , fm−1, vanishing on a unknown prescribed linear subspace S′ of CD, find S′ as the
unique d-dimensional linear subspace in the algebraic set V(q1, . . . , qm−1, f1, . . . , fm−1). First
of all, note that the linear equations fi can easily be removed from the problem: instead
of looking at CD, we can consider the linear subspace defined by the fi, and examine the
algebraic set V(q′1, . . . , q

′
m−1), where q′i are polynomials in D − m + 1 variables which we

obtain by substituting m− 1 variables. So the problem we need to examine is in fact the
modified problem where we have only quadratic polynomials. Secondly, we will assume that
m− 1 ≥ D. Then, from Proposition 2.10, we know that S = S′ and Problem 2.8 becomes
the following.

Problem 3.1. Let S be an unknown d-dimensional subspace of CD. Given m− 1 ≥ D generic
homogenous quadratic polynomials q1, . . . , qm−1 vanishing on S, find the d-dimensional linear
subspace

S = V(q1, . . . , qm−1).

Of course, we have to say what we mean by finding the solution. By assumption, the
quadratic polynomials already fully describe the linear space S. However, since S is a linear
space, we want a basis for S, consisting of d linearly independent vectors in CD. Or, equiva-
lently, we want to find linearly independent linear forms `1, . . . , `D−d such that `i(x) = 0 for
all x ∈ S. The latter is the correct description of the solution in algebraic terms. We now
show how to reformulate this in the right language, following the Algebra-Geometry duality.
The algebraic set S corresponds to an ideal in the polynomial ring C[T1, . . . , TD].

Notation 3.2. We denote the ideal of S by s = I(S). Since S is a linear space, there exists
a linear generating set `1, . . . , `D−d of s which we will fix in the following.

We can now relate the Problem 3.1 to a classical problem in Algebraic Geometry.

Problem 3.3. Let q1, . . . , qm−1,m > D be generic quadratic homogenous polynomials van-
ishing on a linear d-dimensional subspace S ⊆ CD. Then find a linear basis for the radical
ideal √

〈q1, . . . , qm−1〉 = I(V(q1, . . . , qm−1)) = I(S).

The first equality follows from Hilbert’s Nullstellensatz. This also shows that solving the
problem is in fact a question of computing a radical of an ideal. Computing the radical of an
ideal is a classical problem in computational algebraic geometry, which is known to be difficult
(for a more detailed discussion see Section 3.3). However, if we assume m− 1 ≥ D(D+1)/2−
d(d + 1)/2, we can dramatically reduce the computational cost and it is straightforward to
derive an approximate solution. In this case, the qi generate the vector space of homogenous
quadratic polynomials which vanish on S, which we will denote by Hs

2. That this is indeed
the case, follows from Proposition 2.9, and we have dimHs

2 = D(D+ 1)/2− d(d+ 1)/2, as we
will calculate in Remark 3.13.
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Before we continue with solving the problem, we will need to introduce several concepts
and abbreviating notations. In order to define vector spaces of polynomials of certain degrees,
we will first need the ideal m of all polynomials without constant term.

Notation 3.4. We denote the ideal of C[T1, . . . , TD] corresponding to the origin 0 ∈ CD
which is generated by all monomials of degree 1 by m = 〈T1, . . . , TD〉 = I(0).

Using this ideal, we can define the vector spaces of homogeneous polynomials of degree k,
which have the structure of a factor module.

Notation 3.5. We denote the cotangent space of degree k by Hk = mk/mk+1.

For example, H1 is the vector space of all linear forms. The dimensionality of the Hk can
be written in terms of generalized triangular numbers. We will introduce an abbreviation for
the quadratic case H2.

Notation 3.6. We abbreviate the triangular numbers with ∆(D) = D(D+1)
2 .

We will now make a notational convention to denote subspaces of the vector space Hk =
mk/mk+1 :

Notation 3.7. Let I be an ideal of C[T1, . . . , TD]. Then we will denote the vector space
(I ∩mk)/(I ∩mk+1) of homogenous polynomials of degree k in I abbreviatingly by

(I ∩mk)/mk+1.

Note that such a vector space is automatically a sub-vector space of Hk.
The orthogonal sum of RD = S ⊕ S⊥ induces further structure on the Hk.

Notation 3.8. We denote the vector spaces of homogenous polynomials of degree 1 and 2
vanishing on S by Hs

1 and Hs
2, respectively. That is we have

Hs
1 = s/m2 and Hs

2 = s ∩m2/m3.

More generally, we define the vector spaces of homogenous polynomials of degree k vanishing
on S is,

Hs
k = s ∩mk/mk+1.

We will also need analogous definitions for the orthogonal complement of S.

Notation 3.9. We denote the ideal of S⊥ by n = I
(
S⊥
)
.

This leads us to the vector space of homogeneous polynomials of degree 2 that vanish on
S⊥.

Notation 3.10. We denote the vector spaces of homogenous polynomials vanishing on S⊥

with multiplicity 1 and 2 by Hn
1 and Hn

2 respectively, i.e. we have

Hn
1 = n/m3 and Hn

2 = n2/m3.

Thus we can write the direct sums H1 = Hs
1 ⊕Hn

1 and H2 = Hs
2 ⊕Hn

2.
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S ⊂ CD d-dimensional projection space

∆(D) = D(D+1)
2 Dimensionality of the vector space H2

∆(d) = d(d+1)
2 Dimensionality of the vector space Hs

2

C[T1, . . . TD] Polynomial ring over C in D variables
m = 〈T1, . . . , TD〉 The ideal at the origin of CD

Hk = mk/mk+1 C-vector space of k-forms in T1, . . . , TD
s = 〈`1, . . . , `D−d〉 = I(S) The ideal I(S) generated by linear forms `i
Hs
k ⊂ Hk C-vector space of k-forms vanishing on S

n = I(S⊥) The ideal of I
(
S⊥
)

Hn
k ⊂ Hk C-vector space of k-forms vanishing on S⊥

Table 1. Notation and important definitions

3.1. The Algorithm. In this section we present an algorithm for solving Problem 3.3, the
computation of the radical of the ideal 〈q1, . . . , qm−1〉 under the assumption that

m ≥ ∆(D)−∆(d) + 1.

Under those conditions, as we will prove in Remark 3.13 (iii), we have that

〈q1, . . . , qm−1〉 = s ∩m2.

Solving Problem 3.3 is therefore equivalent to computing the radical s =
√
s ∩m2, i.e. finding

Hs
1 when Hs

2 is given in an arbitrary basis. Hs
2 contains the complete information given by

the covariance matrices and Hs
1 gives an explicit linear description of the space of projections

under which the random variables X1, . . . , Xm agree.

Algorithm 1 The input consists of the quadratic forms q1, . . . , qm−1 ∈ C[T1, . . . , TD], gener-
ating s∩m2, and the dimension d; the output is the linear generating set `1, . . . , `D−d for the
ideal s.

1: Let π ← (1 2 · · · D) be a permutation of the variable indices {1, . . . , D}
2: Let Q←

[
q1 · · · qm−1

]>
be the ((m− 1)×∆(D))-matrix of coefficient vectors, where

every row corresponds to a polynomial and every column to a monomial TiTj .
3: for k = 1, . . . , D − d do
4: Order the columns of Q according to the lexicographical ordering of monomials TiTj

with variable indices permuted by πk, i.e. the ordering of the columns is given by
the relation � as

T 2
πk(1) � Tπk(1)Tπk(2) � Tπk(1)Tπk(3) � · · · � Tπk(1)Tπk(D) � T 2

πk(2)

� Tπk(2)Tπk(3) � · · · � T 2
πk(D−1) � Tπk(D−1)Tπk(D) � T 2

πk(D)

5: Transform Q into upper triangular form Q′ using Gaussian elimination
6: The last non-zero row of Q′ is a polynomial Tπk(D)`, where ` is a linear form in s,

and we set `k ← `
7: end for

Algorithm 1 shows the procedure in pseudo-code; a summary of the notation defined in
the previous section can be found in Table 1. The algorithm has polynomial complexity in
the dimension d of the linear subspace S.
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Remark 3.11. Algorithm 1 has average and worst case complexity

O
(
(∆(D)−∆(d))2∆(D)

)
,

In particular, if ∆(d) is not considered as parameter of the algorithm, the average and the
worst case complexity is O(D6). On the other hand, if ∆(D) − ∆(d) is considered a fixed
parameter, then Algorithm 1 has average and worst case complexity O(D2).

Proof. This follows from the complexities of the elementary operations: upper triangulariza-
tion of a generic matrix of rank r with m columns matrix needs O(r2m) operations. We first
perform triangularization of a rank ∆(D) − ∆(d) matrix with ∆(D) columns. The permu-
tations can be obtained efficiently by bringing Q in row-echelon form and then performing
row operations. Operations for extracting the linear forms and comparisons with respect to
the monomial ordering are negligible. Thus the overall operation complexity to calculate s is
O((∆(D)−∆(d))2∆(D)).

Note that the difference between worst- and average case lies at most in the coefficients,
since the inputs are generic and the complexity only depends on the parameter D and not on
the qi. Thus, with probability 1, exactly the worst-case-complexity is attained. �

There are two crucial facts which need to be verified for correctness of this algorithm.
Namely, there are implicit claims made in Line 6 of Algorithm 1: First, it is claimed that the
last non-zero row of Q′ corresponds to a polynomial which factors into certain linear forms.
Second, it is claimed that the ` obtained in step 6 generate s resp. Hs

1. The proofs of these
non-trivial claims can be found in Proposition 3.12 in the next subsection.

Dealing with additional linear forms f1, . . . , fm−1, is possible by way of a slight modification
of the algorithm. Because the fi are linear forms, they are generators of s. We may assume
that the fi are linearly independent. By performing Gaussian elimination before the execution
of Algorithm 1, we may reduce the number of variables by m− 1, thus having to deal with
new quadratic forms in D−m instead of D variables. Also, the dimensionality of the space of
projections is reduced to min(d−m+ 1,−1). Setting D′ = D−m+ 1 and D′ = min(d−m+
1,−1) and considering the quadratic forms qi with Gaussian eliminated variables, Algorithm 1
can be applied to the quadratic forms to find the remaining generators for s. In particular,
if m − 1 ≥ d, then there is no need for considering the quadratic forms, since d linearly
independent linear forms already suffice to determine the solution.

We can also incorporate forms of higher degree corresponding to higher order cumulants.
For this, we start with Hk, where k is the degree of the homogenous polynomials we get
from the cumulant tensors of higher degree. Supposing we start with enough cumulants, we
may assume that we have a basis of Hs

k. Performing Gaussian elimination on this basis with

respect to the lexicographical order, we obtain in the last row a form of type T k−1
πk(D)

`, where

` is a linear form. Doing this for D − d permutations again yields a basis for s resp. H1.

3.2. Proof of correctness. In order to prove the correctness of Algorithm 1, we need to
prove the following three statements.

Proposition 3.12. For Algorithm 1 it holds that
(i) Q is of rank ∆(D)−∆(d).

(ii) The last column of Q in step 6 is of the claimed form.
(iii) The `1, . . . , `D−d generate Hs

1.
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Proof. This proposition will be proved successively in the following: (i) will follow from
Remark 3.13 (iii); (ii) will be proved in Lemma 3.14; and (iii) will be proved in Proposi-
tion 3.15. �

Let us first of all make some observations about the structure of the vector space Hs
2 =

s∩m2/m3 in which we compute. The vector space Hs
2 of polynomials of homogenous degree 2

can be interpreted as the vector space of polynomials generated by the monomials of degree
2, divisible by `, or the vector space generated by the generic quadratic forms qi.

Remark 3.13. The following statements hold:
(i) s ∩m2 = s ·m
(ii) dimCHs

2 = ∆(D)−∆(d)
(iii) Let q1, . . . , qm with m ≥ ∆(D) −∆(d) be generic homogenous quadratic polynomials

in s. Then 〈q1, . . . , qm〉 = s ∩m2.

Proof. (i) By definition, any element ` in s can be written as

` =

D−d∑
n=1

`nfn with fn ∈ C[T1, . . . , TD].

The ideal m2 contains exactly all polynomials without constant or linear term. So ` is in m2

if and only if fn ∈ m for all 1 ≤ i ≤ D − d. This implies, in particular, that s ∩ m2 = s · m.
(ii) Hs

2 is the orthogonal complement of Hn
2 = n2/m3 in the vector space H2. The C-vector

space H2 has dimensionality ∆(D), and Hn
2 has dimensionality ∆(d), so the claim follows.

(iii) First we consider the qi as elements in Hs
2. Due to (ii), we can apply Proposition 2.9 to

conclude that they generate Hs
2 as vector space. By (i), the elements of Hs

2 generate s ∩ m2

when considered as elements in the polynomial ring, so the claim follows. �

Now we begin with proving the remaining claims.

Lemma 3.14. In Algorithm 1 the (∆(D)−∆(d))-th row of Q′ (the upper triangular form of
Q) corresponds to a 2-form Tπ(D)` with ` a linear form in s.

Proof. In this proof, every homogenous polynomial of degree k will be also considered an
element of the vector space Hk in the monomial basis given by the Ti. Thus it makes sense
to speak about the coefficients of Ti for an 1-form resp. the coefficients of TiTj of a 2-form.

Also, without loss of generality, we can take the trivial permutation π = id, since the proof
will not depend on the chosen lexicographical ordering and thus will be naturally invariant
under permutations of variables. First we remark: since S = V(s) is a generic d-dimensional
linear subspace of CD, any linear form inHs

1 will have at least d+1 non-vanishing coefficients in
the Ti. On the other hand, by displaying the generators `i, 1 ≤ i ≤ D−d in Hs

1 in reduced row
echelon form with respect to the Ti-basis, one sees that one can choose all the `i in fact with
exactly d+1 non-vanishing coefficients in the Ti such that no nontrivial linear combination of
the `i has less then d+ 1 non-vanishing coefficients. In particular, one can choose the `i such
that the biggest (w.r.t. the lexicographical order) monomial with non-vanishing coefficient of
`i is Ti.

Remark 3.13 (i) implies that Hs
2 = s ·m/m3 and thus s ·m can be generated by

`iTj , 1 ≤ i ≤ D − d, 1 ≤ j ≤ D.

Together with our above reasoning, this implies the following.
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Fact 1: There exist linear forms `i, 1 ≤ i ≤ D − d such that: the 2-forms `iTj generate
Hs

2, and the biggest monomial of `iTj with non-vanishing coefficient under the lexicographical
ordering is TiTj . By Remark 3.13 (ii), the last row of the upper triangular form Q′ is a
polynomial which has zero coefficients for all monomials possibly except the ∆(d)+1 smallest,

TD−dTD, T
2
D−d+1, TD−d+1TD−d+2, . . . , TD−1TD, T

2
D.

On the other hand, it is guaranteed by our genericity assumption that the biggest of those
terms is indeed non-vanishing, which implies the following.

Fact 2: The biggest monomial of the last row with non-vanishing coefficient (w.r.t the
lexicographical order) is that of TD−dTD.

Combining Facts 1 and 2, we can now infer that the last row must be a scalar multiple of
`D−dTD: since the last row corresponds to an element of Hs

2, it must be a linear combination
of the `iTj . By Fact 1, every contribution of an `iTj , (i, j) 6= (D − d,D) would add a non-
vanishing coefficient lexicographically bigger than TD−dTD which cannot cancel. So, by Fact
2, TD divides the last row of the upper triangular form of Q, which then must be TD`D−d or
a multiple thereof. Also we have that `D−d ∈ s by definition. �

It remains to be shown that by permutation of the variables we can find all linear generators
for s.

Proposition 3.15. The `1, . . . , `D−d generate Hs
1 as vector space and s as ideal.

Proof. Recall that πi was the permutation to obtain `i. As we have seen in the proof of
Lemma 3.14, `i is a linear form which has non-zero coefficients only for the d+ 1 coefficients
Tπi(D−d), . . . , Tπi(D). Thus `i has a non-zero coefficient where all the `j , j < i have a zero
coefficient, and thus `i is linearly independent from the `j , j < i. In particular, it follows that
the `i are linearly independent in H1 = m/m2. On the other hand, they are contained in the
D − d-dimensional sub-C-vector space Hs

1 = s/m2 and are thus a basis of Hs
1. In particular,

the `i generate Hs
1 and thus also s as an ideal. �

Note that all of these proofs generalize to k-forms. For example, one calculates that

dimCHs
k =

(
D + k − 1

k

)
−
(
d+ k − 1

k

)
,

and s ∩mk = s ·mk−1 analogously.

3.3. Relation to Previous Work in Computational Algebraic Geometry. In this
section, we discuss how the algebraic formulation of the cumulant comparison problem given
in Problem 3.3 relates to the classical problems in computational algebraic geometry.

Problem 3.3 confronts us with the following task: given polynomials q1, . . . , qm−1 with
special properties, compute a linear generating set for the radical ideal√

〈q1, . . . , qm−1〉 = I(V(q1, . . . , qm−1)).

Computing the radical of an ideal is a classical task in computational algebraic geometry, so
our problem is a special case of radical computation of ideals, which in turn can be viewed as
an instance of primary decomposition of ideals, see [4, 4.7].

While it has been known for long time that there exist constructive algorithms to calculate
the radical of a given ideal in polynomial rings [15], only in the recent decades there have
been algorithms feasible for implementation in modern computer algebra systems. The best
known algorithms are those of [10], implemented in AXIOM and REDUCE, the algorithm of
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[6], implemented in Macaulay 2, the algorithm of [2], currently implemented in CoCoA, and
the algorithm of [21] and its modification by [22], available in SINGULAR.

All of these algorithms have two points in common. First of all, these algorithms have
computational worst case complexities which are doubly exponential in the square of the
number of variables of the given polynomial ring, see [22, 4.]. Although the worst case
complexities may not be approached for the problem setting described in the current paper,
these off-the-shelf algorithms do not take into account the specific properties of the ideals in
question.

On the other hand, Algorithm 1 can be seen as a homogenous version of the well-known
Buchberger algorithm to find a Groebner basis of the dehomogenization of s with respect
to a degree-first order. Namely, due to our strong assumptions on m, or as it is shown in
Proposition B.22 in the appendix for a more general case, the dehomogenizations of the ideal
〈q1, . . . , qm−1〉 = m · s and the ideal s coincide. In particular, the dehomogenizations of the
qi constitute a generating set for the dehomogenization of s. The Buchberger algorithm now
finds a reduced Groebner basis of s which consists of exactly D− d linear polynomials. Their
homogenizations then constitute a basis of homogenous linear forms of s itself. It can be
checked that the first elimination steps which the Buchberger algorithm performs for the
dehomogenizations of the qi correspond directly to the elimination steps in Algorithm 1 for
their homogenous versions. So our algorithm performs similarly to the Buchberger algorithm
in a dehomogenized setting, since they are almost identical in this special case.

However, in our setting which stems from real data, there is a second point which is
more grave and makes the use of off-the-shelf algorithms impossible: the computability of an
exact result completely relies on the assumption that the ideals given as input are exactly
known, i.e. a generating set of polynomials is exactly known. This is no problem in classical
computational algebra; however, when dealing with polynomials obtained from real data,
the polynomials come not only with numerical error, but in fact with statistical uncertainty.
In general, the classical algorithms will not be able to find any solution when confronted
even with minimal noise on the otherwise exact polynomials. Namely, when we deal with a
system of equations for which over-determination is possible, any perturbed system will be
over-determined and thus have no solution. For example, the exact intersection of N > D+1
linear subspaces in complex D-space is always empty when they are sampled with uncertainty;
this is a direct consequence of Proposition 2.10, when using the assumption that the noise is
generic. However, if all those hyperplanes are nearly the same, then the result of a meaningful
approximate algorithm should be a hyperplane close to all input hyperplanes instead of the
empty set.

Before we continue, we would like to stress a conceptual point in approaching uncertainty.
First, as in classical numerics, one can think of the input as theoretically exact, but with
fixed error ε and then derive bounds on the output error in terms of this ε and analyze
their asymptotics. We will refer to this approach as numerical uncertainty, as opposed to
statistical uncertainty, which is a view more common to Statistics and Machine Learning, as
it is more natural for noisy data. Here, the error is considered as inherently probabilistic
due to small sample effects or noise fluctuation, and algorithms may be analyzed for their
statistical properties, independent of whether they are themselves deterministic or stochastic.
The statistical view on uncertainty is the one the reader should have in mind when reading
this paper.

Parts of the algebra community have been committed to the numerical viewpoint on uncer-
tain polynomials: the problem of numerical uncertainty is for example extensively addressed
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in Stetter’s standard book on numerical algebra [24]. The main difficulties and innovations
stem from the fact that standard methods from algebra like the application of Groebner bases
are numerically unstable, see [24, chapter 4.1-2].

Recently, the Algebraic Geometry community has developed an increasing interest in solv-
ing algebraic problems arising from the consideration of real world data. The algorithms in
this area are more motivated to perform well on the data, some authors start to adapt a sta-
tistical viewpoint on uncertainty, while the influence of the numerical view is still dominant.
As a distinction, the authors describe the field as approximate algebra instead of numerical
algebra. Recent developments in this sense can be found for example in [14] or the book of
[20]. We will refer to this viewpoint as the statistical view in order to avoid confusion with
other meanings of approximate.

Interestingly, there are significant similarities on the methodological side. Namely, in com-
putational algebra, algorithms often compute primarily over vector spaces, which arise for
example as spaces of polynomials with certain properties. Here, numerical linear algebra
can provide many techniques of enforcing numerical stability, see the pioneering paper of [3].
Since then, many algorithms in numerical and approximate algebra utilize linear optimization
to estimate vector spaces of polynomials. In particular, least-squares-approximations of rank
or kernel are canonical concepts in both numerical and approximate algebra.

However, to the best of our knowledge, there is to date no algorithm which computes an
“approximate” (or “numerical”) radical of an ideal, and also none in our special case. In the
next section, we will use estimation techniques from linear algebra to convert Algorithm 1
into an algorithm which can cope with the inherent statistical uncertainty of the estimation
problem.

4. Approximate Algebraic Geometry on Real Data

In this section we show how algebraic computations can be applied to polynomials with
inexact coefficients obtained from estimated cumulants on finite samples. Note that our
method for computing the approximate radical is not specific to the problem studied in this
paper.

The reason why we cannot directly apply our algorithm for the exact case to estimated
polynomials is that it relies on the assumption that there exists an exact solution, such that
the projected cumulants are equal, i.e. we can find a projection P such that the equalities

PΣ1P
> = · · · = PΣmP

> and Pµ1 = · · · = Pµm

hold exactly. However, when the elements of Σ1, . . . ,Σm and µ1, . . . , µm are subject to random
fluctuations or noise, there exists no projection that yields exactly the same random variables.
In algebraic terms, working with inexact polynomials means that the joint vanishing set of
q1, . . . , qm−1 and f1, . . . , fm−1 consists only of the origin 0 ∈ CD so that the ideal becomes
trivial:

〈q1, . . . , qm−1, f1, . . . , fm−1〉 = m.

Thus, in order to find a meaningful solution, we need to compute the radical approximately.
In the exact algorithm, we are looking for a polynomial of the form TD` vanishing on S,

which is also a C-linear combination of the quadratic forms qi. The algorithm is based on
an explicit way to do so which works since the qi are generic and sufficient in number. So
one could proceed to adapt this algorithm to the approximate case by performing the same
operations as in the exact case and then taking the (∆(D)−∆(d))-th row, setting coefficients
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not divisible by TD to zero, and then dividing out TD to get a linear form. This strategy
performs fairly well for small dimensions D and converges to the correct solution, albeit slowly.

Instead of computing one particular linear generator as in the exact case, it is advisable
to utilize as much information as possible in order to obtain better accuracy. The least-
squares-optimal way to approximate a linear space of known dimension is to use singular value
decomposition (SVD): with this method, we may directly eliminate the most insignificant
directions in coefficient space which are due to fluctuations in the input. To that end, we first
define an approximation of an arbitrary matrix by a matrix of fixed rank.

Definition 4.1. Let A ∈ Cm×n with singular value decomposition A = UDV ∗, where D =
diag(σ1, . . . , σp) ∈ Cp×p is a diagonal matrix with ordered singular values on the diagonal,

|σ1| ≥ |σ2| ≥ · · · ≥ |σp| ≥ 0.

For k ≤ p, let D′ = diag(σ1, . . . , σk, 0, . . . , 0). Then the matrix A′ = UD′V ∗ is called rank
k approximation of A. The null space, left null space, row span, column span of A′ will be
called rank k approximate null space, left null space, row span, column span of A.

For example, if u1, . . . , up and v1, . . . , vp are the columns of U and V respectively, the rank
k approximate left null space of A is spanned by the rows of the matrix

L =
[
up−k+1 · · · up

]>
,

and the rank k approximate row span of A is spanned by the rows of the matrix

S =
[
v1 · · · vp

]>
.

We will call those matrices the approximate left null space matrix resp. the approximate
row span matrix of rank k associated to A. The approximate matrices are the optimal
approximations of rank k with respect to the least-squares error.

We can now use these concepts to obtain an approximative version of Algorithm 1. Instead
of searching for a single element of the form TD`, we estimate the vector space of all such
elements via singular value decomposition - note that this is exactly the vector space 〈TD〉 ·
s/m3. Also note that the choice of the linear form TD is irrelevant, i.e. we may replace TD
above by any variable or even linear form. As a trade-off between accuracy and runtime, we
additionally estimate the vector spaces 〈Ti〉 · s/m3 for all 1 ≤ i ≤ D, and then least-squares
average the putative results for s to obtain a final estimator for s and thus the desired space
of projections. In the algorithm, we still keep our assumption that

m ≥ ∆(D)−∆(d) + 1.

We explain the logic behind the single steps: In the first step, we start with the same
matrix Q as in Algorithm 1. Instead of bringing Q into triangular form with respect to the
term order T1 ≺ · · · ≺ TD, we compute the left kernel space row matrix Si of the monomials
not divisible by Ti. Its left image Li = SiQ is a matrix whose row space generates the space
of possible last rows after bringing Q into triangular form in an arbitrary coordinate system.
In the next step, we perform PCA to estimate a basis for the so-obtained vector space of
quadratic forms of type Ti times linear form, and extract a basis for the vector space of linear
forms estimated via Li. Now we can put together all Li and again perform PCA to obtain a
more exact and numerically more estimate for the projection in the last step. The rank of
the matrices after PCA is always chosen to match the correct ranks in the exact case.

We want to remark that Algorithm 2 is a consistent estimator for the correct space of pro-
jections if the covariances are sample estimates. Let us first clarify in which sense consistent
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Algorithm 2 The input consists of noisy quadratic forms q1, . . . , qm−1 ∈ C[T1, . . . , TD], and
the dimension d; the output is an approximate linear generating set `1, . . . , `D−d for the ideal
s.

1: Let Q ←
[
q1 · · · qm−1

]>
be the (m − 1 × ∆(D))-matrix of coefficient vectors, where

every row corresponds to a polynomial and every column to a monomial TiTj in arbitrary
order.

2: for i = 1, . . . , D do
3: Let Qi be the ((m − 1) × ∆(D) − D)-sub-matrix of Q obtained by removing all

columns corresponding to monomials divisible by Ti
4: Compute the approximate left null space matrix Li of Qi of rank (m− 1)−∆(D) +

∆(d) +D − d
5: Compute the approximate row span matrix L′i of LiQ of rank D − d
6: Let L′′i be the (D− d×D)-matrix obtained from L′i by removing all columns corre-

sponding to monomials not divisible by Ti
7: end for
8: Let L be the (D(D − d)×D)-matrix obtained by vertical concatenation of L′′1, . . . , L

′′
D

9: Compute the approximate row span matrix A =
[
a1 · · · aD−d

]>
of L of rank D − d

and let `i =
[
T1 · · · TD

]
ai for all 1 ≤ i ≤ D − d.

is meant here: If each covariance matrix is estimated from a sample of size N or greater,
and N goes to infinity, then the estimate of the projection converges in probability to the
true projection. The reason why Algorithm 2 gives a consistent estimator in this sense is ele-
mentary: Covariance matrices can be estimated consistently, and so can their differences, the
polynomials qi. Moreover, the algorithm can be regarded as an almost continuous function in
the polynomials qi; so convergence in probability to the true projection and thus consistency
follows from the continuous mapping theorem.

The runtime complexity of Algorithm 2 is O(D6) as for Algorithm 1. For this note that
calculating the singular value decomposition of an m× n-matrix is O(mnmax(m,n)).

If we want to consider k-forms instead of 2-forms, we can use the same strategies as above to
numerically stabilize the exact algorithm. In the second step, one might want to consider all
sub-matrices QM of Q obtained by removing all columns corresponding to monomials divisible
by some degree (k − 1) monomial M and perform the for-loop over all such monomials or
a selection of them. Considering D monomials or more gives again a consistent estimator
for the projection. Similarly, these methods allow us to numerically stabilize versions with
reduced epoch requirements and simultaneous consideration of different degrees.

5. Numerical Evaluation

In this section we evaluate the performance of the algebraic algorithm on synthetic data in
various settings. In order to contrast the algebraic approach with an optimization-based
method (cf. Figure 1), we compare with the Stationary Subspace Analysis (SSA) algo-
rithm [28], which solves a similar problem in the context of time series analysis.

5.1. Stationary Subspace Analysis. Stationary Subspace Analysis [28] factorizes an ob-
served time series according to a linear model into underlying stationary and non-stationary
sources. The observed time series x(t) ∈ RD is assumed to be generated as a linear mixture
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of stationary sources ss(t) ∈ Rd and non-stationary sources sn(t) ∈ RD−d,

x(t) = As(t) =
[
As An

] [ss(t)
sn(t)

]
,(6)

with a time-constant mixing matrix A. The underlying sources s(t) are not assumed to be
independent or uncorrelated.

The aim of SSA is to invert this mixing model given only samples from x(t). The true
mixing matrix A is not identifiable [28]; only the projection P ∈ Rd×D to the stationary
sources can be estimated from the mixed signals x(t), up to arbitrary linear transformation
of its image. The estimated stationary sources are given by ŝs(t) = Px(t), i.e. the projection
P eliminates all non-stationary contributions: PAn = 0.

The SSA algorithms [28, 13] are based on the following definition of stationarity: a time
series Xt is considered stationary if its mean and covariance is constant over time, i.e. E[Xt1 ] =
E[Xt2 ] and E[Xt1X

>
t1 ] = E[Xt2X

>
t2 ] for all pairs of time points t1, t2 ∈ N. Following this

concept of stationarity, the projection P is found by minimizing the difference between the
first two moments of the estimated stationary sources ŝs(t) across epochs of the times series.
To that end, the samples from x(t) are divided into m non-overlapping epochs of equal size,
corresponding to the index sets T1, . . . , Tm, from which the mean and the covariance matrix
is estimated for all epochs 1 ≤ i ≤ m,

µ̂i =
1

|Ti|
∑
t∈Ti

x(t) and Σ̂i =
1

|Ti| − 1

∑
t∈Ti

(x(t)− µ̂i) (x(t)− µ̂i)> .

Given a projection P , the mean and the covariance of the estimated stationary sources in the
i-th epoch are given by µ̂si = Pµ̂i and Σ̂s

i = P Σ̂iP
> respectively. Without loss of generality

(by centering and whitening2 the average epoch) we can assume that ŝs(t) has zero mean and
unit covariance.

The objective function of the SSA algorithm [28] minimizes the sum of the differences be-
tween each epoch and the standard normal distribution, measured by the Kullback-Leibler
divergence DKL between Gaussians: the projection P ∗ is found as the solution to the opti-
mization problem,

P ∗ = argmin
PP>=I

m∑
i=1

DKL

[
N (µ̂si , Σ̂

s
i)
∣∣∣∣∣∣ N (0, I)

]
= argmin

PP>=I

m∑
i=1

(
− log det Σ̂s

i + (µ̂si)
>µ̂si

)
,

which is non-convex and solved using an iterative gradient-based procedure.
This SSA algorithm considers a problem that is closely related to the one addressed in this

paper, because the underlying definition of stationarity does not consider the time structure.
In essence, the m epochs are modeled as m random variables X1, . . . , Xm for which we want
to find a projection P such that the projected probability distributions PX1, . . . , PXm are
equal, up to the first two moments. This problem statement is equivalent to the task that we
solve algebraically.

2A whitening transformation is a basis transformation W that sets the sample covariance matrix to the

identity. It can be obtained from the sample covariance matrix Σ̂ as W = Σ̂−
1
2
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5.2. Results. In our simulations, we investigate the influence of the noise level and the
number of dimensions on the performance and the runtime of our algebraic algorithm and
the SSA algorithm. We measure the performance using the subspace angle between the true
and the estimated space of projections S.

The setup of the synthetic data is as follows: we fix the total number of dimensions to
D = 10 and vary the dimension d of the subspace with equal probability distribution from
one to nine. We also fix the number of random variables to m = 110. For each trial of the
simulation, we need to choose a random basis for the two subspaces RD = S ⊕ S⊥, and for
each random variable, we need to choose a covariance matrix that is identical only on S.
Moreover, for each random variable, we need to choose a positive definite disturbance matrix
(with given noise level σ), which is added to the covariance matrix to simulate the effect of
finite or noisy samples.

The elements of the basis vectors for S and S⊥ are drawn uniformly from the interval
(−1, 1). The covariance matrix of each epoch 1 ≤ i ≤ m is obtained from Cholesky factors
with random entries drawn uniformly from (−1, 1), where the first d rows remain fixed across
epochs. This yields noise-free covariance matrices C1, . . . , Cm ∈ RD×D where the first (d×d)-
block is identical. Now for each Ci, we generate a random disturbance matrix Ei to obtain
the final covariance matrix

C ′i = Ci + Ei.

The disturbance matrix Ei is determined as Ei = ViDiV
>
i where Vi is a random orthogonal

matrix, obtained as the matrix exponential of an antisymmetric matrix with random elements
and Di is a diagonal matrix of eigenvalues. The noise level σ is the log-determinant of the
disturbance matrix Ei. Thus the eigenvalues of Di are normalized such that

1

10

10∑
i=1

logDii = σ.

In the final step of the data generation, we transform the disturbed covariance matrices
C ′1, . . . , C

′
m into the random basis to obtain the cumulants Σ1, . . . ,Σm which are the input to

our algorithm.
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Figure 5. Comparison of the algebraic algorithm and the SSA algorithm.
Each panel shows the median error of the two algorithms (vertical axis) for
varying numbers of stationary sources in ten dimensions (horizontal axis). The
noise level increases from the left to the right panel; the error bars extend from
the 25% to the 75% quantile estimated over 2000 random realizations of the
data set.
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The first set of results is shown in Figure 5. With increasing noise levels (from left to
right panel) both algorithms become worse. For low noise levels, the algebraic method yields
significantly better results than the optimization-based approach, over all dimensionalities.
For medium and high-noise levels, this situation is reversed.
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Figure 6. The left panel shows a comparison of the algebraic method and
the SSA algorithm over varying noise levels (five stationary sources in ten
dimensions), the two curves show the median log error. The right panel shows a
comparison of the runtime for varying numbers of stationary sources. The error
bars extend from the 25% to the 75% quantile estimated over 2000 random
realizations of the data set.

In the left panel of Figure 6, we see that the error level of the algebraic algorithm decreases
with the noise level, converging to the exact solution when the noise tends to zero. In contrast,
the error of original SSA decreases with noise level, reaching a minimum error baseline which
it cannot fall below. In particular, the algebraic method significantly outperforms SSA for
low noise levels, whereas SSA is better for high noise. However, when noise is too high, none
of the two algorithms can find the correct solution. In the right panel of Figure 6, we see that
the algebraic method is significantly faster than SSA.
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6. Conclusion

In this paper we have shown how a learning problem formulated in terms of cumulants
of probability distributions can be addressed in the framework of Computational Algebraic
Geometry. As an example, we have demonstrated this viewpoint on the problem of finding a
linear map P ∈ Rd×D such that a set of projected random variables X1, . . . , Xm ∈ RD have
the same distribution,

PX1 ∼ · · · ∼ PXm.

To that end, we have introduced the theoretical groundwork for an algebraic treatment of
inexact cumulants estimated from data: the concept of polynomials that are generic up to
a certain property that we aim to recover from data. In particular, we have shown how
we can find an approximate exact solution to this problem using algebraic manipulation of
cumulants estimated on samples drawn from X1, . . . , Xm. Therefore we have introduced the
notion of computing an approximate radical of an ideal that is optimal in a least-squares
sense. Moreover, using the algebraic problem formulation in terms of generic polynomials, we
have presented compact proofs for a condition on the identifiability of the true solution.

In essence, instead of searching the surface of a non-convex objective function involving
the cumulants, the algebraic algorithm directly finds the solution by manipulating cumulant
polynomials — which is the more natural representation of the problem. This viewpoint is
not only theoretically appealing, but conveys practical advantages that we demonstrate in a
numerical comparison to Stationary Subspace Analysis [28]: the computational cost is signif-
icantly lower and the error converges to zero as the noise level goes to zero. However, the
algebraic algorithm requires m ≥ ∆(D) random variables with distinct distributions, which
is quadratic in the number of dimensions D. This is due to the fact that the algebraic algo-
rithm represents the cumulant polynomials in the vector space of coefficients. Consequently,
the algorithm is confined to linearly combining the polynomials which describe the solution.
However, the set of solutions is also invariant under multiplication of polynomials and poly-
nomial division, i.e. the algorithm does not utilize all information contained in the polynomial
equations. We conjecture that we can construct a more efficient algorithm, if we also multiply
and divide polynomials.

The theoretical and algorithmic techniques introduced in this paper can be applied to other
scenarios in Machine Learning, including the following examples.

• Finding properties of probability distributions. Any inference problem that
can be formulated in terms of polynomial equations is, in principle, amenable to
the algebraic approach; incorporating polynomial constraints on the solution is also
straightforward.
• Approximate solutions to polynomial equations. In Machine Learning, the

problem of solving polynomial equations can e.g. occur in the context of finding the
solution to a constrained nonlinear optimization problem by means of setting the
gradient to zero.
• Conditions for identifiability. Whenever a Machine Learning problem can be

formulated in terms of polynomials, identifiability of its generative model can also be
phrased in terms of algebraic geometry, where a wealth of proof techniques stands at
disposition.

We argue for a cross-fertilization of Approximate Computational Algebra and Machine
Learning: the former can benefit from the wealth of techniques for dealing with uncertainty
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and noisy data; the Machine Learning community may find a novel framework for representing
learning problems that can be solved efficiently using symbolic manipulation.
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Appendix A. An example

In this section, we will show by using a concrete example how the Algorithms 1 and 2 work.
The setup will be the similar to the example presented in the introduction. We will use the
notation introduced in Section 3.

Example A.1. In this example, let us consider the simplest non-trivial case: Two random
variables X1, X2 in R2 such that there is exactly one direction w ∈ R2 such that w>X1 =
w>X2. I.e. the total number of dimensions is D = 2, the dimensionality of the projections is
d = 1. As in the beginning of Section 3, we may assume that R2 = S ⊕ S⊥ is an orthogonal
sum of a one-dimensional space of projections S and its orthogonal complement S⊥. In

particular, S⊥ is given as the linear span of a single vector, say
[
α β

]>
, The space S is also

the linear span of the vector
[
β −α

]>
.

Now we partition the sample into D(D + 1)/2 − d(d + 1)/2 = 2 epochs (this is the lower
bound needed by Proposition 3.12). From the two epochs we can estimate two covariance

matrices Σ̂1, Σ̂2. Suppose we have

Σ̂1 =

[
a11 a12

a21 a22

]
(7)

From this matrices, we can now obtain a polynomial

q1 = w>(Σ̂1 − I)w

= w>
[
a11 − 1 a12

a21 a22 − 1

]
w

= (a11 − 1)T 2
1 + (a12 + a21)T1T2 + (a22 − 1)T 2

2 ,(8)

where w =
[
T1 T2

]>
. Similarly, we analogously obtain a polynomial q2 as the Gram poly-

nomial of Σ̂2 − I.
First we now illustrate how Algorithm 1, which works with homogenous exact polynomials,

can determine the vector space S from these polynomials. For this, we assume that the
estimated polynomials are exact; we will discuss the approximate case later. We can also
write q1 and q2 in coefficient expansion:

q1 = q11T
2
1 + q12T1T2 + q13T

2
2

q2 = q21T
2
1 + q22T1T2 + q23T

2
2 .
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We can also write this formally in the (2 × 3) coefficient matrix Q = (qij)ij , where the
polynomials can be reconstructed as the entries in the vector

Q ·
[
T 2

1 T1T2 T 2
2

]>
.

Algorithm 1 now calculates the upper triangular form of this matrix. For polynomials, this
is equivalent to calculating the last row

q21q1 − q11q2

= [q21q12 − q11q22]T1T2 + [q21q13 − q11q23]T 2
2 .

Then we divide out T2 and obtain

P = [q21q12 − q11q22]T1 + [q21q13 − q11q23]T2.

The algorithm now identifies S⊥ as the vector space spanned by the vector[
α β

]>
=
[
q21q12 − q11q22 q21q13 − q11q23

]>
.

This already finishes the calculation given by Algorithm 1, as we now explicitly know the
solution [

α β
]>

To understand why this strategy works, we need to have a look at the input. Namely, one
has to note that q1 and q2 are generic homogenous polynomials of degree 2, vanishing on S.
That is, we will have qi(x) = 0 for i = 1, 2 and all points x ∈ S. It is not difficult to see that
every polynomial fulfilling this condition has to be of the form

(αT1 + βT2)(aT1 + bT2)

for some a, b ∈ C; i.e. a multiple of the equation defining S. However we may not know this
factorization a priori, in particular we are in general agnostic as to the correct values of α
and β. They have to be reconstructed from the qi via an algorithm. Nonetheless, a correct
solution exists, so we may write

q1 = (αT1 + βT2)(a1X + b1T2)

q2 = (αT1 + βT2)(a2X + b2T2),

with ai, bi generic, without knowing the exact values a priori. If we now compare to the above
expansion in the qij , we obtain the linear system of equations

qi1 = αai

qi2 = αbi + βai

qi3 = βbi

for i = 1, 2, from which we may reconstruct the ai, bi and thus α and β. However, a more
elegant and general way of getting to the solution is to bring the matrix Q as above into
triangular form. Namely, by assumption, the last row of this triangular form corresponds to
the polynomial P which vanishes on S. Using the same reasoning as above, the polynomial
P has to be a multiple of (αT1 +βT2). To check the correctness of the solution, we substitute
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the qij in the expansion of P for ai, bi, and obtain

P =[q21q12 − q11q22]T1T2 + [q21q13 − q11q23]T 2
2

=[αa2(αb1 + βa1)− αa1(αb2 + βa2)]T1T2 + [αa2βb1 − αa1βb2]T 2
2

=[α2a2b1 − α2a1b2]T1T2 + [αβa2b1 − αβa1b2]T 2
2

=(αT1 + βT2)α[a2b1 − a1b2]T2.

This is (αT1 + βT2) times T2 up to a scalar multiple - from the coefficients of the form P ,
we may thus directly reconstruct the vector

[
α β

]
up to a common factor and thus obtain

a representation for S, since the calculation of these coefficients did not depend on a priori
knowledge about S.

If the estimation of the Σ̂i and thus of the qi is now endowed with noise, and we have
more than two epochs and polynomials, Algorithm 2 provides the possibility to perform this
calculation approximately. Namely, Algorithm 2 finds a linear combination of the qi which is
approximately of the form TD` with a linear form ` in the variables T1, T2. The Young-Eckart
Theoremguarantees us that we obtain a consistent and least-squares-optimal estimator for P ,
similarly to the exact case. The reader is invited to check this by hand as an exercise.

Now the observant reader may object that we may have simply obtained the linear form
(αT1 + βT2) and thus S directly from factoring q1 and q2 and taking the unique common
factor. This is true, but this strategy can only be applied in the very special case D− d = 1.
To illustrate the additional difficulties in the general case, we repeat the above example for
D = 4 and d = 2 for the exact case:

Example A.2. In this example, we need already D(D + 1)/2− d(d+ 1)/2 = 7 polynomials
q1, . . . , q7 to solve the problem with Algorithm 1. As above, we can write

qi =qi1T
2
1 + qi2T1T2 + qi3T1T3 + qi4T1T4 + qi5T

2
2

+ qi6T2T3 + qi7T2T4 + qi8T
2
3 + qi9T3T4 + qi,10T

2
4

for i = 1, . . . , 7, and again we can write this in a (7 × 10) coefficient matrix Q = (qij)ij .
In Algorithm 1, this matrix is brought into triangular form. The last row of this triangular
matrix will thus correspond to a polynomial of the form

P = p7T2T4 + p8T
2
3 + p9T3T4 + p10T

2
4

A polynomial of this form is not divisible by T4 in general. However, Proposition 3.12 guar-
antees us that the coefficient p8 is always zero due to our assumptions. So we can divide out
T4 to obtain a linear form

p7T2 + p9T3 + p10T4.

This is one equation defining the linear space S. One obtains another equation in the variables
T1, T2, T3 if one, for example, inverts the numbering of the variables 1−2−3−4 to 4−3−2−1.
Two equations suffice to describe S, and so Algorithm 1 yields the correct solution.

As in the example before, it can be checked by hand that the coefficient p7 indeed vanishes,
and the obtained linear equations define the linear subspace S. For this, one has to use the
classical result from algebraic geometry that every qi can be written as

qi = `1P1 + `2P2,
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where the `i are fixed but arbitrary linear forms defining S as their common zero set, and the
Pi are some linear forms determined by qi and the `i (this is for example a direct consequence
of Hilbert’s Nullstellensatz). Caution is advised as the equations involved become very lengthy
- while not too complex - already in this simple example. So the reader may want to check
only that the coefficient p8 vanishes as claimed.

Appendix B. Generic Algebraic Geometry

In the paper, we have reformulated a problem about comparing probability distributions in
algebraic terms. As we have described for the problem to be well-defined, we need the concept
of genericity for the cumulants. The solution can then be determined as an ideal generated
by generic homogenous polynomials vanishing on a linear subspace. In this supplement,
we will extensively describe this property which we call genericity and derive some simple
consequences.

Since genericity is an algebraic-geometric concept, knowledge about basic algebraic geome-
try will be required for an understanding of this section. In particular, the reader should be at
least familiar with the following concepts before reading this section: Polynomial rings, ideals,
radicals, factor rings, algebraic sets, algebra-geometry correspondence (including Hilbert’s
Nullstellensatz), primary decomposition, height resp. dimension theory in rings. A good
introduction into the necessary framework can be found in the book of [4].

B.1. Definition of genericity. In the algebraic setting of the paper, we would like to cal-
culate the radical of an ideal

I = 〈q1, . . . , qm−1, f1, . . . , fm−1〉.
This ideal I is of a special kind: its generators are random, and are only subject to the
constraints that they vanish on the linear subspace S to which we project, and that they are
homogenous of fixed degree. In order to derive meaningful results on how I relates to S, or
on the solvability of the problem, we need to model this kind of randomness.

In this section, we introduce a concept called genericity. Informally, a generic situation is
a situation without pathological degeneracies. In our case, it is reasonable to believe that
apart from the conditions of homogeneity and the vanishing on S, there are no additional
degeneracies in the choice of the generators. So, informally spoken, the ideal I is generated by
generic homogenous elements vanishing on S. This section is devoted to developing a formal
theory in order to address such generic situations efficiently.

The concept of genericity is already widely used in theoretical computer science, combi-
natorics or discrete mathematics; it is however often defined inexactly or not at all, or it is
only given as an ad-hoc definition for the particular problem. While there exist a variety of
definitions of generic objects or genericity in the literature, the underlying concepts for gener-
icity in this subsection seem to be new, as they link probability theory to algebraic geometry.
The concept is also classically known in the theory of moduli spaces, where the motivation
is slightly different. Most of the results are original to the best of our knowledge, however
some of the results have already been proved in literature ore may be considered folklore,
see for example the study of general polynomials in [17]. Or, compare the concept of generic
polynomials and ideals in [9]. A collection of results on generic polynomials and ideals which
partly overlap with ours may also be found in the recent paper [23].

Let us first make clear what genericity should mean in our applied context. Intuitively,
generic objects are objects without unexpected pathologies or degeneracies. For example, if
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one studies say n lines in the real plane, one wants to exclude pathological cases where lines
lie on each other or where many lines intersect in one point. Having those cases excluded
means examining the “generic” case, i.e. the case where there are n(n + 1)/2 intersections,
n(n + 1) line segments and so forth. Or when one has n points in the plane, one wants to
exclude the pathological cases where for example there are three affinely dependent points,
or where there are more sophisticated algebraic dependencies between the points which one
wants to exclude, depending on the problem.

In the points example, the strategy is straightforward: one could draw the points under a
suitable continuous probability distribution from real two-space. Then, saying that the points
are “generic” just amounts to examine properties which are true with probability one for the
n points. Affine dependencies for example would then occur with probability zero and are
automatically excluded from our interest. One can generalize this idea to the lines example:
one can parameterize the lines by a parameter space, which in this case is two-dimensional
(slope and ordinate), and then sample lines uniformly distributed in this space (one has of
course to make clear what this means). For example, lines lying on each other or more than
two lines intersecting at a point would occur with probability zero, since the part of parameter
space for this situation would have measure zero under the given probability distribution.

When we work with polynomials and ideals, the situation gets a bit more complicated, but
the idea is the same. Polynomials are uniquely determined by their coefficients, so they can
naturally be considered as objects in the vector space of their coefficients. Similarly, an ideal
can be specified by giving the coefficients of some set of generators. Let us make this more
explicit: suppose first we have given a single polynomial f ∈ C[X1, . . . XD] of degree k.

This means that can write f as a finite sum

f =
∑
α∈ND

cαX
α with cα ∈ C.

This means that the possible choices for f can be parameterized by the
(
D+k
k

)
coefficients cI .

Thus polynomials of degree k are parameterized by complex
(
D+k
k

)
-space.

If we now look instead at an algebraic set which is defined by a single polynomial of degree
k, then there are polynomials which have the same vanishing set. Namely, if we multiply any
polynomial by a unit in C, we obtain the same zero set. On the other hand, if we look at the
equivalence classes after multiplication with units in C, we find that two different equivalence
classes give two different zero sets. So the ideals generated by a single polynomial of degree

k may be parameterized by the points of the projective complex
((

D+k
k

)
− 1
)

-space. This

projective space can again be endowed with an algebraic structure. Note that this space is too
big to parameterize the algebraic sets of CD, as not all ideals generated by a single element
are radical. Obviously, this becomes even more complicated when we look at radical ideals
generated by two or more elements. The correct approach to parameterize those is over the
Hilbert scheme, but we will follow a less technical and more pragmatical approach by working
with parameter spaces for polynomials only (in fact, the present approach is a bit different
since we avoid the parts of the Hilbert scheme coming from singular schemes).

So let us write Mk for complex
(
D+k
k

)
-space (we assume D is fixed), interpreting it as a

parameter space for the polynomials of degree k. Now Mk is an algebraic object and thus
we may speak about algebraic sets in it. Also, Mk carries the complex topology induced
by the topology on R2 and by topological isomorphy the Lebesgue measure; thus it also
makes sense to speak about probability distributions and random variables on Mk. This
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dual interpretation will be the main ingredient in defining genericity, since we may view an
algebraic set ofMk as an event describing an algebraic property subject to the random choice
of polynomials. We formalize this with the following:

Definition B.1. Let X be a random variable with values in Mk. Then an event for X is
called algebraic event or algebraic property if the corresponding event set inMk is an algebraic
set. It is called irreducible if the corresponding event set in Mk is an irreducible algebraic
set.

If an event A is irreducible, this means that if we can write A as the event “A1 and A2”, for
algebraic events A1, A2, then A = A1, or A = A2. We now give some examples for algebraic
properties.

Example B.2. The following events on Mk are algebraic properties:

(1) The sure event.
(2) The empty event.
(3) The polynomial is of degree n or less.
(4) The polynomial vanishes on a prescribed algebraic set.
(5) The polynomial is contained in a prescribed ideal.
(6) The polynomial is homogenous of degree n or zero.
(7) The polynomial is homogenous.
(8) The polynomial is a square.
(9) The polynomial is reducible.

Properties 1-6 are additionally irreducible.
We now show how to prove these claims: 1-2 are clear, we first prove that properties 3-

6 are algebraic and irreducible. By definition, it suffices to prove that the subset of Mk

corresponding to those polynomials is an irreducible algebraic set. We claim: in any of those
cases, the subset in question is moreover a linear subspace, and thus algebraic and irreducible.
This can be easily verified by checking directly that if f1, f2 fulfill the property in question,
then f1 + αf2 also fulfills the property.

Property 7 is algebraic, since it can be described as the disjunction of the properties “The
polynomial is homogenous of degree n or zero” for all n ≤ k, for some fixed k. Those
single properties can be described by linear subspaces of Mk as above, thus property 7 is
parameterized by the union of those linear subspaces. In general, these are not contained in
each other, so property 6 is not irreducible.

Property 8 is algebraic, as we can check it through the vanishing of a system of generalized
discriminant polynomials. One can show that it is also irreducible since the subset of Mk

in question corresponds to the image of a Veronese map (homogenization to degree k is a
strategy); however, since we will not need such a result, we do not prove it here.

Property 9 is algebraic, since factorization can also be checked by sets of equations. One
has to be careful here though, since those equations depend on the degrees of the factors.
For example, a polynomial of degree 4 may factor into two polynomials of degree 1 and 3,
or in two polynomials of degree 2 each. Since in general each possible combination defines
different sets of equations and thus different algebraic subsets ofMk, property 8 is in general
not irreducible (for k ≤ 3 it is).

The idea defining a choice of polynomial as generic is now relatively simple: if we choose
a generic polynomial of degree k, then any nontrivial algebraic event should occur with
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probability zero. Also, the simplest algebraic events should be practically independent lest
they imply each other logically. This leads us to the following definition of genericity:

Definition B.3. Let X be a random variable with values in Mk. Then X is called generic,
if for any irreducible algebraic events A,B, the following holds:

The conditional PX(A|B) vanishes if and only if B does not imply A.

Note that B may also be the sure event.
From an algebraical point of view, this implies that under genericity conditions, nontrivial

algebraic conditions on the coefficients of the chosen polynomial are fulfilled with probability
zero if they are not implied by the assumptions.

For example, non-degenerate multivariate Gaussian distributions on Mk are generic dis-
tributions. More general, any smooth probability distribution is generic. Thus, non-generic
random variables are very pathological cases. Note however, that our intention is not to
analyze the behavior of particular fixed generic random variables (this is part of classical
statistics), but to infer statements which follow not from the particular structure of the prob-
ability function, but solely from the fact that it is generic.

Now we are ready to state what a generic object is:

Definition B.4. We call a generic random variable with values in Mk a generic polynomial
of degree k. When the degree k is arbitrary, but fixed (and still ≥ 1), we will say that f is a
generic polynomial, or that f is generic, if it is clear from the context that f is a polynomial.
If the degree k is zero, we will analogously say that f is a generic constant.

We call a set of constants or polynomials f1, . . . , fm generic if they are generic and inde-
pendent.

We call an ideal generic if it is generated by a set of m generic polynomials.

We call an algebraic set generic if it is the vanishing set of a generic ideal.

Let P be an algebraic property on a polynomial, a set of polynomials, an ideal, or an
algebraic set (e.g. homogenous, contained in an ideal et.). We will call a polynomial, a set
of polynomials, or an ideal, a generic P polynomial, set, or ideal, if it the conditional of a
generic random variable with respect to P.

If A is a statement about an object (polynomial, ideal etc), and P an algebraic property,
we will say briefly “A generic P object is A” instead of saying “A generic P object is A with
probability one”.

So for example, when we say

“A generic green ideal is blue”,

this is an abbreviation for the by definition equivalent but more lengthy statement

“Let f1, . . . , fm be independent generic random variables with values in Mk1 , . . . ,Mkm . If
the ideal 〈f1, . . . , fm〉 is green, then with probability one, it is also blue - this statement is
independent of the choice of the ki and the choice of which particular generic random variables
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we use to sample.

On the other hand, we will use the verb “generic” also as a qualifier for “constituting
generic distribution”. So for example, when we say

“The Z of a generic red polynomial is a generic yellow polynomial”,

this is an abbreviation of the statement

“Let X be a generic random variable on Mk, let X ′ be the yellow conditional of X. Then
the Z of X ′ is the red conditional of some generic random variable - in particular this state-
ment is independent of the choice of k and the choice of X.”

It is important to note that the respective random variables will not be made explicit in
the following subsections, since the statements will rely only on its property of being generic,
and not on its particular structure which goes beyond being generic.

Remark B.5. The concept of genericity defined above is related to the concepts of ”general”
and ”very generic” in the study of moduli. In our situation, where the properties are all
Zariski-closed, the usual usage of those terms coincides with our definition of ”generic”. While
we could have adopted a purely algebraic formulation, we chose the current probabilistic one
which is more close to the application.

Using the concept of genericity and the above conventions, we may now formulate the
problem of comparing cumulants in terms of generic algebra:

Problem B.6. Let s = I(S), where S is an unknown d-dimensional subspace of CD. Let

I = 〈f1, . . . , fm〉
with fi ∈ s generic of fixed degree each (in our case, one and two), such that

√
I = s.

Then determine a reduced Groebner basis (or another simple generating system) for s.

As we will see, genericity is the right concept to model the algebraic version of SSA, as we
will derive special properties of the ideal I which follow from the genericity of the fi.

B.2. Generic arithmetic. In this subsection, we study how generic polynomials behave un-
der classical operations in rings and ideals. This will become important later when we study
generic polynomials and ideals.

To introduce the reader to our notation of genericity, and since we will use the presented
facts and similar notations implicitly later, we prove the following

Lemma B.7. Let f ∈ C[X1, . . . , XD] be generic of degrees k. Then:
(i) The product αf is generic of degree k for any fixed α ∈ C \ {0}.

(ii) The sum f + g is generic of degree k for any g ∈ C[X1, . . . , XD] of degree k or smaller.
(iii) The sum f + g is generic of degree k for any generic g ∈ C[X1, . . . , XD] of degree k or

smaller.

Proof. (i) is clear since the coefficients of g1 are multiplied only by a constant. (ii) follows
directly from the definitions since adding a constant g only shifts the coefficients without
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changing genericity. (iii) follows since f, g are independently sampled: if there were algebraic
dependencies between the coefficients of f + g, then either f or g was not generic, or the f, g
are not independent, which both would be a contradiction to the assumption. �

Recall again what this Lemma means: for example, Lemma B.7 (i) does not say, as one
could think:

“Let X be a generic random variable with values in the vector space of degree k polyno-
mials. Then X = αX for any α ∈ C \ {0}.”

The correct translation of Lemma B.7 (i) is:

“Let X be a generic random variable with values in the vector space of degree k polyno-
mials. Then X ′ = αX for any fixed α ∈ C \ {0} is a generic random variable with values in
the vector space of degree k polynomials”

The other statements in Lemma B.7 have to be interpreted similarly.

The following remark states how genericity translates through dehomogenization:

Lemma B.8. Let f ∈ C[X1, . . . , XD] be a generic homogenous polynomial of degree d.
Then the dehomogenization f(X1, . . . , XD−1, 1) is a generic polynomial of degree d in the
polynomial ring C[X1, . . . , XD−1].

Similarly, let s E C[X1, . . . , XD] be a generic homogenous ideal. Let f ∈ s be a generic
homogenous polynomial of degree d.
Then the dehomogenization f(X1, . . . , XD−1, 1) is a generic polynomial of degree d in the
dehomogenization of s.

Proof. For the first statement, it suffices to note that the coefficients of a homogenous poly-
nomial of degree d in the variables X1, . . . , XD are in bijection with the coefficients of a
polynomial of degree d in the variables X1, . . . , XD−1 by dehomogenization. For the second
part, recall that the dehomogenization of s consists exactly of the dehomogenizations of ele-
ments in s. In particular, note that the homogenous elements of s of degree d are in bijection
to the elements of degree d in the dehomogenization of s. The claims then follows from the
definition of genericity. �

B.3. Generic spans and generic height theorem. In this subsection, we will derive the
first results on generic ideals. We will derive an statement about spans of generic polynomials,
and generic versions of Krull’s principal ideal and height theorems which will be the main
tool in controlling the structure of generic ideals. This has immediate applications for the
cumulant comparison problem.

We begin with a probably commonly known result which can be easily formulated in terms
of genericity:

Proposition B.9. Let P be an algebraic property such that the polynomials with property P
form a vector space V . Let f1, . . . , fm ∈ C[X1, . . . XD] be generic polynomials satisfying P.
Then

rank span(f1, . . . , fm) = min(m,dimV ).
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Proof. It suffices to prove: if i ≤ M, then fi is linearly independent from f1, . . . fi−1 with
probability one. Assuming the contrary would mean that for some i, we have

fi =
i−1∑
k=0

fkck for some ck ∈ C,

thus giving several equations on the coefficients of fi. But these are fulfilled with probability
zero by the genericity assumption, so the claim follows. �

This may be seen as a straightforward generalization of the statement: the span of n generic
points in CD has dimension min(n,D).

We now proceed to another nontrivial result which will now allow us to formulate a generic
version of Krull’s principal ideal theorem:

Proposition B.10. Let Z ⊆ CD be a non-empty algebraic set, let f ∈ C[X1, . . . XD] generic.
Then f is no zero divisor in O(Z) = C[X1, . . . XD]/ I(Z).

Proof. We claim: being a zero divisor in O(Z) is an irreducible algebraic property. We will
prove that the zero divisors in O(Z) form a linear subspace of Mk, and linear spaces are
irreducible.

For this, one checks that sums and scalar multiples of zero divisors are also zero divisors:
if g1, g2 are zero divisors, there must exist h1, h2 such that g1h1 = g2h2 = 0. Now for any
α ∈ C, we have that

(g1 + αg2)(h1h2) = (g1h1)h2 + (g2h2)αh1 = 0.

This proves that (g1 +αg2) is also a zero divisor, proving that the zero divisors form a linear
subspace and thus an irreducible algebraic property.

To apply the genericity assumption to argue that this event occurs with probability zero,
we must exclude the possibility that being a zero divisor is trivial, i.e. always the case. This
is equivalent to proving that the linear subspace has positive codimension, which is true if
and only if there exists a non-zero divisor in O(Z). But a non-zero divisor always exists since
we have assumed Z is non-empty: thus I(Z) is a proper ideal, and O(Z) contains C, which
contains a non-zero divisor, e.g. the one.

So by the genericity assumption, the event that f is a zero divisor occurs with probability
zero, i.e. a generic f is not a zero divisor. Note that this does not depend on the degree of
f. �

This result is already known, compare Conjecture B in [23].
A straightforward generalization using the same proof technique is given by the following

Corollary B.11. Let I E C[X1, . . . , XD], let P be a non-trivial algebraic property. Let f ∈
C[X1, . . . XD] be a generic polynomial with property P . If one can write f = f ′ + c, where f ′

is a generic polynomial subject to some property P ′, and c is a generic constant, then f is no
zero divisor in C[X1, . . . , XD]/I.

Proof. First note that f is a zero divisor in C[X1, . . . , XD]/I if and only if f is a zero divisor

in C[X1, . . . , XD]/
√
I. This allows us to reduce to the case that I = I(Z) for some algebraic
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set Z ⊆ CD.

Now, as in the proof of Proposition B.10, we see that being a zero divisor in O(Z) is an
irreducible algebraic property and corresponds to a linear subspace of Mk, where k = deg f.
The zero divisors with property P are thus contained in this linear subspace. Now let f
be generic with property P as above. By assumption, we may write f = f ′ + c. But c is
(generically) no zero divisor, so f is also not a zero divisor, since the zero divisors form a
linear subspace of Mk. Thus f is no zero divisor. This proves the claim. �

Note that Proposition B.10 is actually a special case of Corollary B.11, since we can write
any generic polynomial f as f ′ + c, where f ′ is generic of the same degree, and c is a generic
constant.

The major tool to deal with the dimension of generic intersections is Krull’s principal ideal
theorem:

Theorem B.12 (Krull’s principal ideal theorem). Let R be a commutative ring with unit,
let f ∈ R be non-zero and non-invertible. Then

ht〈f〉 ≤ 1,

with equality if and only if f is not a zero divisor in R.

The reader unfamiliar with height theory may take

ht I = codim V(I)

as the definition for the height of an ideal (cave: codimension has to be taken in R).

Reformulated geometrically for our situation, Krull’s principal ideal theorem implies:

Corollary B.13. Let Z be a non-empty algebraic set in CD.Then

codim(Z ∩V(f)) ≤ codimZ + 1.

Proof. Apply Krull’s principal ideal theorem to the ring R = O(Z) = C[X1, . . . , XD]/ I(Z).
�

Together with Proposition B.10, one gets a generic version of Krull’s principal ideal theo-
rem:

Theorem B.14 (Generic principal ideal theorem). Let Z be a non-empty algebraic set in
CD, let R = O(Z), and let f ∈ C[X1, . . . , XD] be generic. Then we have

ht〈f〉 = 1.

In its geometric formulation, we obtain the following

Corollary B.15. Consider an algebraic set Z ⊆ CD, and the algebraic set V(f) for some
generic f ∈ C[X1, . . . , XD]. Then

codim(Z ∩V(f)) = min(codimZ + 1, D + 1).

Proof. This is just a direct reformulation of Theorem B.14 in the vein of Corollary B.13. The
only additional thing that has to be checked is the case where codimZ = D+ 1, which means
that Z is the empty set. In this case, the equality is straightforward. �
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The generic version of the principal ideal theorem straightforwardly generalizes to a generic
version of Krull’s height theorem. We first mention the original version:

Theorem B.16 (Krull’s height theorem). Let R be a commutative ring with unit, let I =
〈f1, . . . , fm〉ER be an ideal. Then

ht I ≤ m,
with equality if and only if f1, . . . , fm is an R-regular sequence, i.e. fi is not invertible and
not a zero divisor in the ring R/〈f1, . . . , fi−1〉 for all i.

The generic version can be derived directly from the generic principal ideal theorem:

Theorem B.17 (Generic height theorem). Let Z be an algebraic set in CD, let I = 〈f1, . . . , fm〉
be a generic ideal in C[X1, . . . , XD]. Then

ht(I(Z) + I) = min(codimZ +m, D + 1).

Proof. We will write R = O(Z) for abbreviation.

First assume m ≤ D + 1− codimZ. It suffices to show that f1, . . . , fm forms an R-regular
sequence, then apply Krull’s height theorem. In Proposition B.10, we have proved that
fi is not a zero divisor in the ring O(Z ∩ V(f1, . . . , fi−1)) (note that the latter ring is
nonzero by Krull’s height theorem). By Hilbert’s Nullstellensatz, this is the same as the

ring R/
√
〈f1, . . . , fi−1〉. But by the definition of radical, this implies that fi is no zero divisor

in the ring R/〈f1, . . . , fi−1〉, since if fi · h = 0 in the first ring, we have

(fi · h)N = fi · (fN−1
i hN ) = 0

in the second. Thus the fi form an R-regular sequence, proving the theorem for the case
m ≤ D + 1− codimZ.

If now m > k := D + 1 − codimZ, the above reasoning shows that the radical of I(Z) +
〈f1, . . . , fk〉 is the module 〈1〉, which means that those are equal. Thus

I(Z) + 〈f1, . . . , fk〉 = I(Z) + 〈f1, . . . , fm〉 = 〈1〉,

proving the theorem.

Note that we could have proved the generic height theorem also directly from the generic
principal ideal theorem by induction. �

Again, we give the geometric interpretation of Krull’s height theorem:

Corollary B.18. Let Z1 be an algebraic set in CD, let Z2 be a generic algebraic set in CD.
Then one has

codim(Z1 ∩ Z2) = min(codimZ1 + codimZ2, D + 1).

Proof. This follows directly from two applications of the generic height theorem B.17: first
for Z = CD and Z2 = V(I), showing that codimZ2 is equal to the number m of generators
of I; then, for Z = Z1 and Z2 = V(I), and substituting m = codimZ2. �

We can now immediately formulate a homogenous version of Proposition B.18:
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Corollary B.19. Let Z1 be a homogenous algebraic set in CD, let Z2 be a generic homogenous
algebraic set in CD. Then one has

codim(Z1 ∩ Z2) = min(codimZ1 + codimZ2, D).

Proof. Note that homogenization and dehomogenization of a non-empty algebraic set do not
change its codimension, and homogenous algebraic sets always contain the origin. Also, one
has to note that by Lemma B.8, the dehomogenization of Z2 is a generic algebraic set in
CD−1. �

Finally, using Corollary B.11, we want to give a more technical variant of the generic height
theorem, which will be of use in later proofs. First, we introduce some abbreviating notations:

Definition B.20. Let f ∈ C[X1, . . . XD] be a generic polynomial with property P . If one
can write f = f ′+ c, where f ′ is a generic polynomial subject to some property P ′, and c is a
generic constant, we say that f has independent constant term. If c is generic and independent
with respect to some collection of generic objects, we say that f has independent constant
term with respect to that collection.

In this terminology, Corollary B.11 rephrases as: a generic polynomial with independent
constant term is no zero divisor. Using this, we can now formulate the corresponding variant
of the generic height theorem:

Lemma B.21. Let Z be an algebraic set in CD. Let f1, . . . , fm ∈ C[X1, . . . , XD] be generic,
possibly subject to some algebraic properties, such that fi has independent constant term with
respect to Z and f1, . . . , fi−1. Then

ht(I(Z) + I) = min(codimZ +m, D + 1).

Proof. Using Corollary B.11, one obtains that fi is no zero divisor modulo I(Z)+〈f1, . . . , fi+1〉.
Using Krull’s height theorem yields the claim. �

B.4. Generic ideals. The generic height theorem B.17 has allowed us to make statements
about the structure of ideals generated by generic elements without constraints. However, the
ideal I in our the cumulant comparison problem is generic subject to constraints: namely,
its generators are contained in a prescribed ideal, and they are homogenous. In this sub-
section, we will use the theory developed so far to study generic ideals and generic ideals
subject to some algebraic properties, e.g. generic ideals contained in other ideals. We will use
these results to derive an identifiability result on the marginalization problem which has been
derived already less rigourously in the supplementary material of [28] for the special case of
Stationary Subspace Analysis.

Proposition B.22. Let s E C[X1, . . . , XD] be an ideal with Groebner basis g1, . . . , gn with
respect to some degree-first term order. Let

I = 〈f1, . . . , fm〉, m ≥ max(D + 1, n+ 1)

with generic fi ∈ s such that

deg fi ≥ max
j

(deg gj) for all 1 ≤ i ≤ m.

Then I = s.
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Proof. First note that since the gi form a degree-first Groebner basis, a generic f ∈ s is of
the form

f =

n∑
k=1

gkhk with generic hk,

where the degrees of the hk are appropriately chosen, i.e. deg hk ≤ deg f − deg gk.

So we may write

fi =

n∑
k=1

gkhki with generic hki,

where the hki are generic with appropriate degrees, and independently chosen. We may also
assume that the fi are ordered increasingly by degree.

To prove the statement, it suffices to show that gj ∈ I for all j. Now the height theo-
rem B.17 implies that

〈h11, . . . h1m〉 = 〈1〉,
since the hki were independently generic, and m ≥ D+1. In particular, there exist polynomials
s1, . . . , sm such that

m∑
i=1

sih1i = 1.

Thus we have that
m∑
i=1

sifi =
m∑
i=1

si

n∑
k=1

gkhki =
n∑
k=1

gk

m∑
i=1

sihki

= g1 +
n∑
k=2

gk

m∑
i=1

sihki =: g1 +
n∑
k=2

gkh
′
k.

Subtracting a suitable multiple of this element from the f1, . . . , fm, we obtain

f ′i =
n∑
k=2

gk(hki − h1ih
′
k) =:

n∑
k=2

gkh
′
ki.

We may now consider h1ih
′
k as fixed, while the hki are generic. In particular, the h′ki have

independent constant term, and using Lemma B.21, we may conclude that

〈h′21, . . . , h
′
2m〉 = 〈1〉,

allowing us to find an element of the form

g2 +

n∑
k=3

gk · . . .

in I. Iterating this strategy by repeatedly applying Lemma B.21, we see that gk is contained
in I, because the ideals I and s have same height. Since the numbering for the gj was
arbitrary, we have proved that gj ∈ I, and thus the proposition. �

The following example shows that in general, we may not take the degrees of the fi lower
than the maximal degree of the gj in the proposition, i.e. the condition on the degrees is
necessary:
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Example B.23. Keep the notations of Proposition B.22. Let s = 〈X2 −X2
1 , X3〉, and fi ∈ s

generic of degree one. Then
〈f1, . . . , fm〉 = 〈X3〉.

This example can be generalized to yield arbitrarily bad results if the condition on the degrees
is not fulfilled.

However note that when s is generated by linear forms, as in the marginalization problem,
the condition on the degrees vanishes.

We may use Proposition B.22 also in another way to derive a more detailed version of the
generic height theorem for constrained ideals:

Proposition B.24. Let V be a fixed d-codimensional algebraic set in CD. Assume that there
exist d generators g1, . . . , gd for I(V ). Let f1, . . . , fm be generic forms in I(V ) such that
deg fi ≥ deg gi for 1 ≤ i ≤ min(m, d). Then we can write V(f1, . . . , fm) = V ∪ U with
U an algebraic set of

codimU ≥ min(m, D + 1),

the equality being strict for m < codimV.

Proof. If m ≥ D + 1, this is just a direct consequence of Proposition B.22.

First assume m = d. Consider the image of the situation modulo Xm, . . . , XD. This corre-
sponds to looking at the situation

V(f1, . . . , fm) ∩H ⊆ H ∼= Cm−1,

where H is the linear subspace given by Xm = · · · = XD = 0. Since the coordinate sys-
tem was generic, the images of the fi will be generic, and we have by Proposition B.22 that
V(f1, . . . , fm) ∩H = V ∩H. Also, the H can be regarded as a generic linear subspace, thus
by Corollary B.18, we see that V(f1, . . . , fm) consists of V and possibly components of equal
or higher codimension. This proves the claim for m = codimV.

Now we prove the case m ≥ d. We may assume that m = D + 1 and then prove the
statement for the sets V(f1, . . . , fi), d ≤ i ≤ m. By the Lasker-Noether-Theorem, we may
write

V(f1, . . . , fd) = V ∪ Z1 ∪ · · · ∪ ZN
for finitely many irreducible components Zj with codimZj ≥ codimV. Proposition B.22 now
states that

V(f1, . . . , fm) = V.

For i ≥ d, write now

Zji = Zj ∩V(f1, . . . , fi) = Zj ∩V(fd+1, . . . , fi).

With this, we have the equalities

V(f1, . . . , fi) = V(f1, . . . , fd) ∩V(fd+1, . . . , fi)

= V ∪ (Z1 ∩V(fd+1, . . . , fi)) ∪ · · · ∪ (ZN ∩V(fd+1, . . . , fi))

= V ∪ Z1i ∪ · · · ∪ ZNi.
for i ≥ d. Thus, reformulated, Proposition B.22 states that Zjm = ∅ for any j. We can now
infer by Krull’s principal ideal theorem B.12 that

codimZji ≤ codimZj,i−1 + 1
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for any i, j. But since codimZjm = D + 1, and codimZjd ≥ d, we thus may infer that
codimZji ≥ i for any d ≤ i ≤ m. Thus we may write

V(f1, . . . , fi) = V ∪ U with U = Z1i ∪ · · · ∪ ZNi
with codimU ≥ i, which proves the claim for m ≥ codimV.

The case m < codimV can be proved again similarly by Krull’s principal ideal theo-
rem B.12: it states that the codimension of V(f1, . . . , fi) increases at most by one with each
i, and we have seen above that it is equal to codimV for i = codimV. Thus the codimension
of V(f1, . . . , fi) must have been i for every i ≤ codimV. This yields the claim. �

Note that depending on V and the degrees of the fi, it may happen that even in the generic
case, the equality in Proposition B.24 is not strict for m ≥ codimV :

Example B.25. Let V be a generic linear subspace of dimension d in CD, let f1, . . . , fm ∈
I(V ) be generic with degree one. Then V(f1, . . . , fm) is a generic linear subspace of dimension
max(D−m, d) containing V. In particular, if m ≥ D− d, then V(f1, . . . , fm) = V. In this ex-
ample, U = V(f1, . . . , fm), if m < codimV, with codimension m, and U = ∅, if m ≥ codimV,
with codimension D + 1.

Similarly, one may construct generic examples with arbitrary behavior for codimU when
m ≥ codimV, by choosing V and the degrees of fi appropriately.

Similarly as in the geometric version for the height theorem, we may derive the following
geometric interpretation of this result:

Corollary B.26. Let V ⊆ Z1 be fixed algebraic sets in CD. Let Z2 be a generic algebraic set
in CD containing V. Then

codim(Z1 ∩ Z2 \ V ) ≥ min(codim(Z1 \ V ) + codim(Z2 \ V ), D + 1).

Informally, we have derived a height theorem type result for algebraic sets under the con-
straint that they contain another prescribed algebraic set V .

We also want to give a homogenous version of Proposition B.24, since the ideals in the
paper are generated by homogenous forms:

Corollary B.27. Let V be a fixed homogenous algebraic set in CD. Let f1, . . . , fm be generic
homogenous forms in I(V ), satisfying the degree condition as in Proposition B.24. Then
V(f1, . . . , fm) = V + U with U an algebraic set fulfilling

codimU ≥ min(m, D).

In particular, if m > D, then V(f1, . . . , fm) = V. Also, the maximal dimensional part of
V(f1, . . . , fm) equals V if and only if m > D − dimV.

Proof. This follows immediately by dehomogenizing, applying Proposition B.24, and homog-
enizing again. �

From this Corollary, we now can directly derive a statement on the necessary number
of epochs for the identifiability of the projection making several random variables appear
identical. For the convenience of the reader, we recall the setting and then explain what
identifiability means. The problem we consider in the main part of the paper can be described
as follows:
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Problem B.28. Let X1, . . . , Xm be smooth random variables, let

qi = [T1, . . . , TD] ◦ (κ2(Xi)− κ2(Xm)) , 1 ≤ i ≤ m− 1

and

fi = [T1, . . . , TD] ◦ (κ1(Xi)− κ1(Xm)) , 1 ≤ i ≤ m− 1

be the corresponding polynomials in the formal variables T1, . . . , TD. What can one say about
the set

S′ = V(q1, . . . , qm−1, f1, . . . , fm−1).

If there is a linear subspace S on which the cumulants agree, then the qi, fi vanish on S.
If we assume that this happens generically, the problem reformulates to

Problem B.29. Let S be a d-dimensional linear subspace of CD, let s = I(S), and let
f1, . . . , fN be generic homogenous quadratic or linear polynomials in s. How does S′ =
V(f1, . . . , fN ) relate to S?.

Before giving bounds on the identifiability, we first begin with a direct consequence of
Corollary B.27:

Remark B.30. The highest dimensional part of S′ = V(f1, . . . , fN ) is S if and only if

N > D − d.

For this, remark that I(S) is generated in degree one, and thus the degree condition in
Corollary B.27 becomes empty.

We can now also get an identifiability result for S:

Proposition B.31. Let f1, . . . , fN be generic homogenous polynomials of degree one or two,
vanishing on a linear space S of dimension d. Then S is identifiable from the fi alone if

N ≥ D − d+ 1.

Moreover, if all fi are quadrics, then S is identifiable from the fi alone only if

N ≥ 2.

Proof. Note that the f1, . . . , fN are generic polynomials contained in s := I(S).
First assume N ≥ D − d + 1. We prove that S is identifiable: using Corollary B.27, one

sees now that the common vanishing set of the fi is S up to possible additional components
of dimension d − 1 or less. Since we are in the exact case, we may use one of the existing
algorithms to compute the radical and its prime decomposition√

〈f1, . . . , fN 〉 = s ∩ p1 ∩ · · · ∩ pk

of the corresponding ideal. Because the pi are of dimension d−1 or less, while s has dimension
d, we may identify s as the unique component of the highest dimensional part of the primary
decomposition of

√
〈f1, . . . , fN 〉 which proves identifiability if N ≥ D−d+1 for the exact case.

Now we prove the second, only if statement: assume that N = 1, and we have only a single
quadric f1. If suffices to prove that V(f1) contains a linear space of dimension d different
from S, since there is no other information on S except it being a d-dimensional linear space
contained in V(f1).
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Let `1, . . . , `D−d be some homogenous generators for s = I(S). Since f1 is generic with the
property of vanishing on S, it is generic with the property of being in s, so it can be written
as

f1 =
D−d∑
i=1

`i`
′
i,

where `′i are generic homogenous linear forms without further constraint. In particular, V(f1)
also contains the d-dimensional linear space V(`′1, . . . , `

′
D−d) which is different from S. �

Note that there seems to be no obvious reason for the given lower bound to be necessary
if d is known. Since the linear subspace s might be reconstructed from even dimensional
components of the intersection by the mere fact that one of them contains a linear subspace
of dimension d. Namely, a generic homogenous variety of high enough degree and dimension
needs not contain a linear subspace of fixed dimension d in general. It would be interesting
to have a counterexample for the necessity of the identifiability bound in such a case.
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44 F. J. KIRÁLY, P. VON BÜNAU, F. C. MEINECKE, D. A. J. BLYTHE, AND K.-R. MÜLLER
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