61 research outputs found

    Long-term responders on olaparib maintenance in high-grade serous ovarian cancer: Clinical and molecular characterization

    Get PDF
    Purpose: Maintenance therapy with olaparib has improved progression-free survival in women with high-grade serous ovarian cancer (HGSOC), particularly those harboring BRCA1/2 mutations. The objective of this study was to characterize long-term (LT) versus short-term (ST) responders to olaparib. Experimental Design: A comparative molecular analysis of Study 19 (NCT00753545), a randomized phase II trial assessing olaparib maintenance after response to platinum-based chemotherapy in HGSOC, was conducted. LT response was defined as response to olaparib/placebo > 2 years, ST as < 3 months. Molecular analyses included germline BRCA1/2 status, three-biomarker homologous recombination deficiency (HRD) score, BRCA1 methylation, and mutational profiling. Another olaparib maintenance study (Study 41; NCT01081951) was used as an additional cohort. Results: Thirty-seven LT (32 olaparib) and 61 ST (21 olaparib) patients were identified. Treatment was significantly associated with outcome (P < 0.0001), with more LT patients on olaparib (60.4%) than placebo (11.1%). LT sensitivity to olaparib correlated with complete response to chemotherapy (P < 0.05). In the olaparib LT group, 244 genetic alterations were detected, with TP53, BRCA1, and BRCA2 mutations being most common (90%, 25%, and 35%, respectively). BRCA2 mutations were enriched among the LT responders. BRCA methylation was not associated with response duration. High myriad HRD score (>42) and/or BRCA1/2 mutation was associated with LT response to olaparib. Study 41 confirmed the correlation of LT response with olaparib and BRCA1/2 mutation. Conclusions: Findings show that LT response to olaparib may be multifactorial and related to homologous recombination repair deficiency, particularly BRCA1/2 defects. The type of BRCA1/2 mutation warrants further investigation. (C) 2017 AACR

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Multiple objective optimization and inverse design of axial turbomachinery blades

    No full text
    An optimization procedure, based on a method for solving inverse problems for the design of whole multistage axial turbines and compressors, is presented in the paper. A simplified axisymmetric model of three-dimensional axial turbomachines is adopted where volume forces replace the stator and rotor. The tangential component of such blade forces represents the design parameters that are defined through the optimization algorithm, whereas the stream surfaces that represent the stators and rotors are obtained by solving the inverse flow problem governed by the time-dependent Euler equations. The current optimization procedure takes into account some three-dimensional effects, such as lean and sweep, in the early stages of the design of blade rows by directly controlling the blade loading. The optimization process is based on a multi-objective genetic algorithm where a search for an optimal Pareto front is performed. Some preliminary numerical examples, which refer to the design of a linear cascade and compressor stage, are discussed

    An investigation of radiative proton-capture reactions in the Cd-In mass region

    No full text
    The reaction network in the neutron-deficient part of the nuclear chart around A similar to 100 contains several nuclei of importance to astrophysical processes, such as the p-process. This work reports on the results, from recent experimental studies of the radiative proton-capture reactions Cd-112,Cd-114 (p, gamma) In-113,In-115. Experimental cross sections for the reactions have been measured for proton beam energies residing inside the respective Gamow windows for each reaction, using isotopically enriched Cd-112 and Cd-114 targets. Two different techniques, the in-beam gamma-ray spectroscopy and the activation method have been employed, with the latter considered necessary to account for the presence of low-lying isomers in In-113 (E-gamma approximate to 392 keV, t(1/2) approximate to 100 min), and In-115 (E-gamma approximate to 336 keV, t(1/2 )approximate to 4.5 h). Following the measurement of the total reaction cross sections, the astrophysical S factors have been additionally deduced. The experimental results are compared with Hauser-Feshbach theoretical calculations carried out with the most recent version of TALYS. The results are discussed in terms of their significance to the various parameters entering the models. (C) 2021 Elsevier B.V. All rights reserved
    corecore