809 research outputs found

    Identification of the slow E3 transition 136mCs -> 136Cs with conversion electrons

    Full text link
    We performed at ISOLDE the spectroscopy of the decay of the 8- isomer in 136Cs by and conversion-electron detection. For the first time the excitation energy of the isomer and the multipolarity of its decay have been measured. The half-life of the isomeric state was remeasured to T1/2 = 17.5(2) s. This isomer decays via a very slow 518 keV E3 transition to the ground state. In addition to this, a much weaker decay branch via a 413 keV M4 and a subsequent 105 keV E2 transition has been found. Thus we have found a new level at 105 keV with spin 4+ between the isomeric and the ground state. The results are discussed in comparison to shell model calculations.Comment: Phys. Rev. C accepted for publicatio

    Mechanical Ventilation and the Titer of Antibodies as Risk Factors for the Development of Transfusion-Related Lung Injury

    Get PDF
    Purpose. Onset of transfusion-related acute lung injury (TRALI) is suggested to be a threshold-event. Data is lacking on the relation between titer of antibodies infused and onset of TRALI. We determined whether onset of TRALI is dependent on the titer of MHC-I antibodies infused in a combined model of ventilator-induced lung injury and antibody-induced TRALl. Methods. BALB/c mice were ventilated for five hours with low (7.5 ml/kg) or high (15 ml/kg) tidal volume. After three hours of MV, TRALI was induced by infusion of 0.5 mg/kg, 2.0 mg/kg or 4.5 mg/kg MHC-I antibodies. Control animals received vehicle. After five hours of MV, animals were sacrificed. Results. MV with high tidal volumes resulted in increased levels of all markers of lung injury compared to animals ventilated with low tidal MV. In ventilator-induced lung injury, infusion of 4.5 mg/kg of antibodies further increased pulmonary wet-to-dry ratio, pulmonary neutrophil influx and pulmonary KC levels, whereas infusion of lower dose of antibodies did not augment lung injury. In contrast, mice ventilated with low tidal volumes did not develop lung injury, irrespective of the dose of antibody used. Conclusions. In the presence of injurious MV, onset of TRALI depends on the titer of antibodies infused

    Characterization of 30 76^{76}Ge enriched Broad Energy Ge detectors for GERDA Phase II

    Get PDF
    The GERmanium Detector Array (GERDA) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double beta decay of 76^{76}Ge into 76^{76}Se+2e^-. GERDA has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new Ge detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the HADES underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for GERDA Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the strength of pulse shape simulation codes.Comment: 29 pages, 18 figure

    The Legacy of Hope Summit: A Consensus-Based Initiative and Report on Eating Disorders in the U.S. and Recommendations for the Path Forward

    Get PDF
    Background: Several unsuccessful attempts have been made to reach a cross-disciplinary consensus on issues fundamental to the field of eating disorders in the United States (U.S.). In January 2020, 25 prominent clinicians, academicians, researchers, persons with lived experience, and thought leaders in the U.S. eating disorders community gathered at the Legacy of Hope Summit to try again. This paper articulates the points on which they reached a consensus. It also: (1) outlines strategies for implementing those recommendations; (2) identifies likely obstacles to their implementation; and (3) charts a course for successfully navigating and overcoming those challenges. Methods: Iterative and consensual processes were employed throughout the Summit and the development of this manuscript. Results: The conclusion of the Summit culminated in several consensus points, including: (1) Eating disorder outcomes and prevention efforts can be improved by implementing creative health education initiatives that focus on societal perceptions, early detection, and timely, effective intervention; (2) Such initiatives should be geared toward parents/guardians, families, other caretakers, and frontline healthcare providers in order to maximize impact; (3) Those afflicted with eating disorders, their loved ones, and the eating disorders community as a whole would benefit from greater accessibility to affordable, quality care, as well as greater transparency and accountability on the part of in-hospital, residential, and outpatient health care providers with respect to their qualifications, methodologies, and standardized outcomes; (4) Those with lived experience with eating disorders, their loved ones, health care providers, and the eating disorders community as a whole, also would benefit from the establishment and maintenance of treatment program accreditation, professional credentialing, and treatment type and levels of care guidelines; and (5) The establishment and implementation of effective, empirically/evidence-based standards of care requires research across a diverse range of populations, adequate private and government funding, and the free exchange of ideas and information among all who share a commitment to understanding, treating, and, ultimately, markedly diminishing the negative impact of eating disorders. Conclusions: Widespread uptake and implementation of these recommendations has the potential to unify and advance the eating disorders field and ultimately improve the lives of those affected. A cross-disciplinary group of eating disorder professionals, thought leaders, and persons with lived experience have come together and reached a consensus on issues that are fundamental to the battle against the life-threatening and life-altering illnesses that are eating spectrum disorders. Those issues include: (1) the need for early detection, intervention, prevention, and evidenced-based standards of care; (2) the critical need to make specialized care more accessible and affordable to all those in need; (3) the importance of developing uniform, evidenced-based standards of care; (4) the need for funding and conducting eating spectrum disorder research; and (5) the indispensability of advocacy, education, and legislation where these illnesses are concerned. During the consensus process, the authors also arrived at strategies for implementing their recommendations, identified likely obstacles to their implementation, and charted a course for successfully navigating and overcoming those challenges. Above all else, the authors demonstrated that consensus in the field of eating spectrum disorders is possible and achievable and, in doing so, lit a torch of hope that is certain to light the path forward for years to come

    Tau (297‐391) forms filaments that structurally mimic the core of paired helical filaments in Alzheimer’s disease brain

    Get PDF
    The constituent paired helical filaments (PHFs) in neurofibrillary tangles are insoluble intracellular deposits central to the development of Alzheimer’s disease (AD) and other tauopathies. Full‐length tau requires the addition of anionic cofactors such as heparin to enhance assembly. We have shown that a fragment from the proteolytically stable core of the PHF, tau 297‐391 known as ‘dGAE’, spontaneously forms cross‐β‐containing PHFs and straight filaments under physiological conditions. Here, we have analysed and compared the structures of the filaments formed by dGAE in vitro with those deposited in the brains of individuals diagnosed with AD. We show that dGAE forms PHFs that share a macromolecular structure similar to those found in brain tissue. Thus, dGAEs may serve as a model system for studying core domain assembly and for screening for inhibitors of tau aggregation

    The background in the neutrinoless double beta decay experiment GERDA

    Get PDF
    The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of 76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q-value of the decay, Q_bb. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around Q_bb. The main parameters needed for the neutrinoless double beta decay analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around Q_bb with a background index ranging from 17.6 to 23.8*10^{-3} counts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model are consistent. The observed number of events in this energy region is consistent with the background model. The background at Q-bb is dominated by close sources, mainly due to 42K, 214Bi, 228Th, 60Co and alpha emitting isotopes from the 226Ra decay chain. The individual fractions depend on the assumed locations of the contaminants. It is shown, that after removal of the known gamma peaks, the energy spectrum can be fitted in an energy range of 200 kev around Q_bb with a constant background. This gives a background index consistent with the full model and uncertainties of the same size

    The first search for bosonic super-WIMPs with masses up to 1 MeV/c2^2 with GERDA

    Get PDF
    We present the first search for bosonic super-WIMPs as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-beta decay experiment which operates high-purity germanium detectors enriched in 76^{76}Ge in an ultra-low background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c2^2 to 1 MeV/c2^2. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c2^2 have been set. As an example, at a mass of 150 keV/c2^2 the most stringent direct limits on the dimensionless couplings of axion-like particles and dark photons to electrons of gae<31012g_{ae} < 3 \cdot 10^{-12} and α/α<6.51024{\alpha'}/{\alpha} < 6.5 \cdot 10^{-24} at 90% credible interval, respectively, were obtained.Comment: 6 pages, 3 figures, submitted to Physical Review Letters, added list of authors, updated ref. [21
    corecore