37,454 research outputs found
Digital Communication Systems Subject to Frequency Selective Fading
Frequency selective fading effects on binary digital communication system
Decomposition tables for experiments. II. Two--one randomizations
We investigate structure for pairs of randomizations that do not follow each
other in a chain. These are unrandomized-inclusive, independent, coincident or
double randomizations. This involves taking several structures that satisfy
particular relations and combining them to form the appropriate orthogonal
decomposition of the data space for the experiment. We show how to establish
the decomposition table giving the sources of variation, their relationships
and their degrees of freedom, so that competing designs can be evaluated. This
leads to recommendations for when the different types of multiple randomization
should be used.Comment: Published in at http://dx.doi.org/10.1214/09-AOS785 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
BowScribe: Supporting the violinist's performance model
Musicians often learn about their vision of a
piece through practicing it and listening to recordings. However,
this does not always free the player to develop his or her own
interpretation of the piece, especially when technique is lacking. We
have developed software, the BowScribe markup language, that supports
a violinist in creating a ``performance model'' of a piece currently
beyond his or her playing skills, by allowing the player fine control
over tempo, volume, and articulation, including playing of chords, at
a level of expressiveness and flexibility that is significantly beyond
the MIDI playback modes of popular music notation software. BowScribe
has been used by the first author (who was trained as a prfessional
violinist) to create a model of the entire Bach Chaconne (edited by
Glamian), a long and demanding piece of music for solo violin that has
many phrases that span groups of chords as well as melodic passages.
The markup language specified chords to be rolled in two classic ways,
as well as a wide variety of other strokes, including greater volume
for individual notes in long slurs and small but essential variations
in tempo
Decomposition tables for experiments I. A chain of randomizations
One aspect of evaluating the design for an experiment is the discovery of the
relationships between subspaces of the data space. Initially we establish the
notation and methods for evaluating an experiment with a single randomization.
Starting with two structures, or orthogonal decompositions of the data space,
we describe how to combine them to form the overall decomposition for a
single-randomization experiment that is ``structure balanced.'' The
relationships between the two structures are characterized using efficiency
factors. The decomposition is encapsulated in a decomposition table. Then, for
experiments that involve multiple randomizations forming a chain, we take
several structures that pairwise are structure balanced and combine them to
establish the form of the orthogonal decomposition for the experiment. In
particular, it is proven that the properties of the design for such an
experiment are derived in a straightforward manner from those of the individual
designs. We show how to formulate an extended decomposition table giving the
sources of variation, their relationships and their degrees of freedom, so that
competing designs can be evaluated.Comment: Published in at http://dx.doi.org/10.1214/09-AOS717 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Recommended from our members
Service user involvement in the evaluation of psycho-social intervention for self-harm: a systematic literature review
Background: The efficacy of interventions and treatments for self-harm is well researched. Previous reviews of the literature have highlighted the lack of definitively effective interventions for self-harm and have highlighted the need for future research. These recommendations are also reflected in clinical guidelines published by the National Institute for Health and Clinical Excellence (NICE, 2004) which also call for service user involvement in studies of treatment efficacy. Aims: A systematic review was undertaken to determine i) what contributions service users have made to the evaluation of psychosocial interventions ii) by what methods have service users been involved iii) in what ways could service user involvement supplement empirical evidence for interventions
Oscillating chiral currents in nanotubes: a route to nanoscale magnetic test tubes
With a view to optimising the design of carbon-nanotube (CNT) windmills and
to maximising the internal magnetic field generated by chiral currents, we
present analytical results for the group velocity components of an electron
flux through chiral carbon nanotubes. Chiral currents are shown to exhibit a
rich behaviour and can even change sign and oscillate as the energy of the
electrons is increased. We find that the transverse velocity and associated
angular momentum of electrons is a maximum for non-metallic CNTs with a chiral
angle of 18. Such CNTs are therefore the optimal choice for CNT windmills
and also generate the largest internal magnetic field for a given longitudinal
current. For a longitudinal current of order amps, this field can be
of order Teslas, which is sufficient to produce interesting spintronic
effects and a significant contribution to the self inductance.Comment: 4 pages, 1 figur
Prospects for improved branching fractions
The experimental uncertainty on the branching fraction \b(\Lambda_c \to p
K^- \pi^+) = (5.0 \pm 1.3)% has not decreased since 1998, despite a much
larger data sample. Uncertainty in this quantity dominates that in many other
quantities, including branching fractions of to other modes,
branching fractions of -flavored baryons, and fragmentation fractions of
charmed and bottom quarks. Here we advocate a lattice QCD calculation of the
form factors in (the case
is simpler as the mass of the lepton can be neglected). Such a calculation
would yield an absolute prediction for the rate for . When combined with the lifetime, it could provide
a calibration for an improved set of branching fractions as long as
the accuracy exceeds about 25%.Comment: 8 pages, 2 figures, version to be published in Phys.\ Rev.\
Thermal capacitator design rationale. Part 1: Thermal and mechanical property data for selected materials potentially useful in thermal capacitor design and construction
The thermal properties of paraffin hydrocarbons and hydrocarbon mixtures which may be used as the phase change material (PCM) in thermal capacitors are discussed. The paraffin hydrocarbons selected for consideration are those in the range from C11H24 (n-Undecane) to C20H42 (n-Eicosane). A limited amount of data is included concerning other properties of paraffin hydrocarbons and the thermal and mechanical properties of several aluminum alloys which may find application as constructional materials. Data concerning the melting temperature, transition temperature, latent heat of fusion, heat of transition, specific heat, and thermal conductivity of pure and commercial grades of paraffin hydrocarbons are given. An index of companies capable of producing paraffin hydrocarbons and information concerning the availability of various grades (purity levels) is provided
- …