80 research outputs found

    Incorporating psychology into cyber security education: A pedagogical approach

    Get PDF
    The role of the human in cyber security is well acknowledged. Many cyber security incidents rely upon targets performing specific behavioural actions, such as opening a link within a phishing email. Cyber adversaries themselves are driven by psychological processes such as motivation, group dynamics and social identity. Furthermore, both intentional and unintentional insider threats are associated with a range of psychological factors, including cognitive load, mental wellbeing, trust and interpersonal relations. By incorporating psychology into cyber security education, practitioners will be better equipped with the skills they need to address cyber security issues. However, there are challenges in doing so. Psychology is a broad discipline, and many theories, approaches and methods may have little practical significance to cyber security. There is a need to sift through the literature to identify what can be applied to cyber security. There are also pedagogical differences in how psychology and cyber security are taught and also psychological differences in the types of student that may typically study psychology and cyber security. To engage with cyber security students, it is important that these differences are identified and positively addressed. Essential to this endeavor is the need to discuss and collaborate across the two disciplines. In this paper, we explore these issues and discuss our experiences as psychology and cyber security academics who work across disciplines to deliver psychology education to cyber security students, practitioners and commercial clients

    Clinical significance of side population in ovarian cancer cells

    Get PDF
    Recently, accumulating evidence has suggested that tumors, including ovarian cancer, are composed of a heterogeneous cell population with a small subset of cancer stem cells (CSCs) that sustain tumor formation and growth. The emergence of drug resistance is one of the most difficult problems in the treatment of ovarian cancer, which has been explained recently by the potential of CSCs to have superior resistance against anti-cancer drugs than conventional cancer cells. In this study, we expanded this line of study to examine whether this phenomenon is also observed in clinical specimens of ovarian cancer cells. In total we could analyze 28 samples out of 60 obtained from ovarian cancer patients. The clinical samples were subjected to testing of the expression of side population (SP) as a CSC marker, and according to the presence of SP (SP+) or absence of SP (SP−), clinicopathological significances were analyzed. Although there was no statistical significance, there were more SP+s in recurrent cases as well as in ascitic and peritoneal dissemination than in primary tumor of the ovary. There was no correlation between SP status and FIGO staging. In 19 cases of those who could be followed more than 6 months from initial therapy, there were 8 cases of recurrence or death from disease, and all of these were SP+. On the other hand, in 11 cases of disease-free survivors, 6 were SP+. There was a significant difference in prognosis between SP+ and SP− (p = 0.017). Although this study was limited, it revealed that SP could be contained more in recurrent or metastatic tumors than in primary tumors, and also that the presence of SP could be a risk factor of recurrence in ovarian cancer. Therefore, a novel therapeutic strategy targeting SP could improve the prognosis of ovarian cancer

    Do cancer cells undergo phenotypic switching? The case for imperfect cancer stem cell markers

    Get PDF
    The identification of cancer stem cells in vivo and in vitro relies on specific surface markers that should allow to sort cancer cells in phenotypically distinct subpopulations. Experiments report that sorted cancer cell populations after some time tend to express again all the original markers, leading to the hypothesis of phenotypic switching, according to which cancer cells can transform stochastically into cancer stem cells. Here we explore an alternative explanation based on the hypothesis that markers are not perfect and are thus unable to identify all cancer stem cells. Our analysis is based on a mathematical model for cancer cell proliferation that takes into account phenotypic switching, imperfect markers and error in the sorting process. Our conclusion is that the observation of reversible expression of surface markers after sorting does not provide sufficient evidence in support of phenotypic switching

    Senescent Cells in Growing Tumors: Population Dynamics and Cancer Stem Cells

    Get PDF
    Tumors are defined by their intense proliferation, but sometimes cancer cells turn senescent and stop replicating. In the stochastic cancer model in which all cells are tumorigenic, senescence is seen as the result of random mutations, suggesting that it could represent a barrier to tumor growth. In the hierarchical cancer model a subset of the cells, the cancer stem cells, divide indefinitely while other cells eventually turn senescent. Here we formulate cancer growth in mathematical terms and obtain predictions for the evolution of senescence. We perform experiments in human melanoma cells which are compatible with the hierarchical model and show that senescence is a reversible process controlled by survivin. We conclude that enhancing senescence is unlikely to provide a useful therapeutic strategy to fight cancer, unless the cancer stem cells are specifically targeted

    Detection and Characterization of CD133+ Cancer Stem Cells in Human Solid Tumours

    Get PDF
    Osteosarcoma is the most common primary tumour of bone. Solid tumours are made of heterogeneous cell populations, which display different goals and roles in tumour economy. A rather small cell subset can hold or acquire stem potentials, gaining aggressiveness and increasing expectancy of recurrence. The CD133 antigen is a pentaspan membrane glycoprotein, which has been proposed as a cancer stem cell marker, since it has been previously demonstrated to be capable of identifying a cancer initiating subpopulation in brain, colon, melanoma and other solid tumours. Therefore, our aim was to observe the possible presence of cells expressing the CD133 antigen within solid tumour cell lines of osteosarcoma and, then, understand their biological characteristics and performances.In this study, using SAOS2, MG63 and U2OS, three human sarcoma cell lines isolated from young Caucasian subjects, we were able to identify and characterize, among them, CD133+ cells showing the following features: high proliferation rate, cell cycle detection in a G2\M phase, positivity for Ki-67, and expression of ABCG2 transporters. In addition, at the FACS, we were able to observe the CD133+ cell fraction showing side population profile and forming sphere-clusters in serum-free medium with a high clonogenic efficiency.Taken together, our findings lead to the thought that we can assume that we have identified, for the first time, CD133+ cells within osteosarcoma cell lines, showing many features of cancer stem cells. This can be of rather interest in order to design new therapies against the bone cancer

    Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter blockade

    Get PDF
    Cancers are a heterogeneous mix of cells, some of which exhibit cancer stem cell-like characteristics including ATP-dependent drug efflux and elevated tumorigenic potential. To determine whether aerodigestive squamous cell carcinomas (SCCs) contain a subpopulation of cancer stem cell-like cells, we performed Hoechst dye efflux assays using four independent cell lines. Results revealed the presence of a rare, drug effluxing stem cell-like side population (SP) of cells within all cell lines tested (SCC-SP cells). These cells resembled previously characterised epithelial stem cells, and SCC-SP cell abundance was positively correlated with overall cellular density and individual cell quiescence. Serial SCC-SP fractionation and passaging increased their relative abundance within the total cell population. Purified SCC-SP cells also exhibited increased clonogenic potential in secondary cultures and enhanced tumorigenicity in vivo. Despite this, SCC-SP cells remained chemotherapeutically sensitive upon ATP-dependent transporter inhibition. Overall, these findings suggest that the existence of ATP transporter-dependent cancer stem-like cells may be relatively common, particularly within established tumours. Future chemotherapeutic strategies should therefore consider coupling identification and targeting of this potential stem cell-like population with standard treatment methodologies

    Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines

    Get PDF
    BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism

    Neoplastic transformation of breast epithelial cells by genotoxic stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to genotoxic stresses such as radiation and tobacco smoke can cause increased cancer incidence rate as reflected in an in depth meta-analysis of data for women and breast cancer incidence. Published reports have indicated that exposures to low dose radiation and tobacco smoke are factors that contribute to the development of breast cancer. However, there is a scarcity of information on the combinatorial effects of low dose radiation and tobacco smoke on formation and progression of breast cancer. The combination of these two genotoxic insults can induce significant damage to the genetic material of the cells resulting in neoplastic transformation.</p> <p>Methods</p> <p>To study the effects of low dose ionizing radiation and tobacco smoke on breast cells, MCF 10A cells were treated either with radiation (Rad - 0.1 Gray) or cigarette smoke condensate (Csc - 10 microgram/ml of medium) or a combination of Rad + Csc. Following treatments, cells were analyzed for cell cycle distribution patterns and the ability to extrude the Hoechst 33342 dye. In addition, <it>in vitro </it>invasion and migration as well as mammosphere formation assays were performed. Finally, differential gene expression profiles were generated from the individual and combination treatment.</p> <p>Results</p> <p>Exposure of MCF 10A cells to the combination of radiation plus cigarette smoke condensate generated a neoplastic phenotype. The transformed phenotype promoted increased mammosphere numbers, altered cell cycle phases with a doubling of the population in S phase, and increased invasion and motility. Also, exclusion of Hoechst 33342 dye, a surrogate marker for increased ABC transporters, was observed, which indicates a possible increase in drug resistance. In addition, changes in gene expression include the up regulation of genes encoding proteins involved in metabolic pathways and inflammation.</p> <p>Conclusions</p> <p>The results indicate that when normal breast cells are exposed to low dose radiation in combination with cigarette smoke condensate a phenotype is generated that exhibits traits indicative of neoplastic transformation. More importantly, this is the first study to provide a new insight into a possible etiology for breast cancer formation in individuals exposed to low dose radiation and tobacco smoke.</p

    "A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of breast cancer metastasis depends on the use of established breast cancer cell lines that do not accurately represent the heterogeneity and complexity of human breast tumors. A tumor model was developed using primary breast tumor-initiating cells isolated from patient core biopsies that would more accurately reflect human breast cancer metastasis.</p> <p>Methods</p> <p>Tumorspheres were isolated under serum-free culture conditions from core biopsies collected from five patients with clinical diagnosis of invasive ductal carcinoma (IDC). Isolated tumorspheres were transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity <it>in vivo</it>. Tumors and metastatic lesions were analyzed by hematoxylin and eosin (H+E) staining and immunohistochemistry (IHC).</p> <p>Results</p> <p>Tumorspheres were successfully isolated from all patient core biopsies, independent of the estrogen receptor α (ERα)/progesterone receptor (PR)/Her2/neu status or tumor grade. Each tumorsphere was estimated to contain 50-100 cells. Transplantation of 50 tumorspheres (1-5 × 10<sup>3 </sup>cells) in combination with Matrigel into the mammary fat pad of NUDE mice resulted in small, palpable tumors that were sustained up to 12 months post-injection. Tumors were serially transplanted three times by re-isolation of tumorspheres from the tumors and injection into the mammary fat pad of NUDE mice. At 3 months post-injection, micrometastases to the lung, liver, kidneys, brain and femur were detected by measuring content of human chromosome 17. Visible macrometastases were detected in the lung, liver and kidneys by 6 months post-injection. Primary tumors variably expressed cytokeratins, Her2/neu, cytoplasmic E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. In lung and liver metastases, variable redistribution of E-cadherin and β catenin to the membrane of tumor cells was observed. ERα was re-expressed in lung metastatic cells in two of five samples.</p> <p>Conclusions</p> <p>Tumorspheres isolated under defined culture conditions from patient core biopsies were tumorigenic when transplanted into the mammary fat pad of NUDE mice, and metastasized to multiple mouse organs. Micrometastases in mouse organs demonstrated a dormancy period prior to outgrowth of macrometastases. The development of macrometastases with organ-specific phenotypic distinctions provides a superior model for the investigation of organ-specific effects on metastatic cancer cell survival and growth.</p
    corecore