282 research outputs found

    The Evolution of Central Volcanoes in Ultraslow Rift Systems : Constraints From D. Joao de Castro Seamount, Azores

    Get PDF
    The Dom Joao de Castro seamount in the Hirondelle Basin (Azores) is a central volcano on the ultraslow diverging Terceira Rift axis. The combination of structural and geochemical data provides insights into the evolution of central volcanoes in oceanic rift systems above the Azores melting anomaly. The orientation of fault scarps and volcanic structures at D. Joao de Castro and the adjacent Castro fissure zone indicate that the regional SW-NE extending stress field dominates the morphology of the NW Hirondelle Basin. The regional tectonic stress field controls the crustal melt pathways and leads to dike emplacement along fissure zones and the prevalent eruption of mafic lavas. The occurrence of mafic to felsic lavas at D. Joao de Castro gives evidence for both a deep and a shallow crustal melt reservoir generating a subordinate local stress field at the seamount. New Sr-Nd-Pb isotope data along with incompatible trace element ratios indicate that D. Joao de Castro and the Castro Ridges originated from similarly heterogeneous mantle source but did not form simultaneously. Our new model implies that central volcanoes along the Terceira Rift form by the growth of volcanic ridges and transitioned into circular edifices after magmatic systems generate local changes in the regional lithospheric stress field. The geometry of D. Joao de Castro and other magmatic systems along the Terceira Rift combined with the alkaline nature of the erupted lavas, and the large lithosphere thickness indicates that young oceanic rifts are more similar to continental rifts rather than mid-ocean ridges.Peer reviewe

    The Levantine Basin - crustal structure and origin

    Get PDF
    The origin of the Levantine Basin in the Southeastern Mediterranean Sea is related to the opening of the Neo-Tethys. The nature of its crust has been debated for decades. Therefore, we conducted a geophysical experiment in the Levantine Basin. We recorded two refraction seismic lines with 19 and 20 ocean bottom hydrophones, respectively, and developed velocity models. Additional seismic reflection data yield structural information about the upper layers in the first few kilometers. The crystalline basement in the Levantine Basin consists of two layers with a P-wave velocity of 6.06.4 km/s in the upper and 6.56.9 km/s in the lower crust. Towards the center of the basin, the Moho depth decreases from 27 to 22 km. Local variations of the velocity gradient can be attributed to previously postulated shear zones like the Pelusium Line, the DamiettaLatakia Line and the BaltimHecateus Line. Both layers of the crystalline crust are continuous and no indication for a transition from continental to oceanic crust is observed. These results are confirmed by gravity data. Comparison with other seismic refraction studies in prolongation of our profiles under Israel and Jordan and in the Mediterranean Sea near Greece and Sardinia reveal similarities between the crust in the Levantine Basin and thinned continental crust, which is found in that region. The presence of thinned continental crust under the Levantine Basin is therefore suggested. A β-factor of 2.33 is estimated. Based on these findings, we conclude that sea-floor spreading in the Eastern Mediterranean Sea only occurred north of the Eratosthenes Seamount, and the oceanic crust was later subducted at the Cyprus Arc

    Calf thymus Hsc70 protein protects and reactivates prokaryotic and eukaryotic enzymes.

    Full text link
    The heat-shock 70 protein (Hsp70) chaperone family is very conserved and its prokaryotic homologue, the DnaK protein, is assumed to form one of the cellular systems for the prevention and restoration of heat-induced protein denaturation. By using anti-DnaK antibodies we purified the DnaK homologue heat-shock cognate protein (Hsc70) from calf thymus to apparent homogeneity. This protein was classified as an eukaryotic Hsc70, since (i) monoclonal antibodies against eukaryotic Hsc70 recognized it, (ii) its amino-terminal sequence showed strong homology to Hsp70s from eukaryotes and, (iii) it had an intrinsic weak ATPase activity that was stimulated by various peptide substrates. We show that this calf thymus Hsc70 protein protected calf thymus DNA polymerases alpha and epsilon as well as Escherichia coli DNA polymerase III and RNA polymerase from heat inactivation and could reactivate these heat-inactivated enzymes in an ATP-hydrolysis dependent manner, likely leading to the dissociation of aggregates formed during heat inactivation. In contrast to this, DnaK protein was exclusively able to protect and to reactivate the enzymes from E.coli but not from eukaryotic cells. Finally, the addition of calf thymus DnaJ co-chaperone homologue reduced the amount of Hsc70 required for reactivation at least 10-fold

    Lehren aus Corona

    Get PDF
    Zusammenfassung Krisen wie die COVID-19-Pandemie sind für die Politik stets Anlass gewesen, festgefahrene Strukturen aufzubrechen und weitreichende Reformen umzusetzen. Pfadabhängigkeiten können in Krisenzeiten unterbrochen werden. Der vorliegende Band beleuchtet die gesellschaftlichen Auswirkungen der Pandemie sowie die langfristigen Herausforderungen und Potenziale, die mit ihr einhergehen, aus wirtschafts- und unternehmensethischer Perspektive. Wie verändert die COVID-19-Krise das Kräfteverhältnis zwischen Staat, Markt und Unternehmen? Welche Pflichten kommen auf Unternehmen während einer Pandemie zu? Inwieweit sind die Bekämpfung der Corona- und der Klima-Krise vereinbar? Welche Rolle kann und soll Wirtschaftsethik in Zeiten der Krise spielen? Mit Beiträgen von Prof. Dr. Michael S. Aßländer; Prof. Dr. Jörg Althammer; Prof. Dr. Martin Büscher; Niklas Dummer, M.A.; Dr. habil. Michael Ehret; Miriam Fink; Prof. Dr. Manfred Fischedick; Prof. Dr. Nils Goldschmidt; Prof. Dr. Hanns-Stephan Haas; PD Dr. Michaela Haase; Prof. Dr. Ludger Heidbrink; Prof. Dr. Ulrich Hemel; Prof. Dr. Lars Hochmann; Ruzana Liburkina, M.A.; Mark McAdam; Prof. em. Dietmar Mieth; Prof. Dr. Dr. Elmar Nass; Dr. Laura Otto; Prof. Dr. Reinhard Pfriem; Prof. Dr. Ingo Pies; Prof. em. Birger Priddat; Frauke Remmers; Dr. Bastian Ronge; Prof. Dr. Hartmut Rosa; Prof. em. Hermann Sautter; Dr. Philipp Schepelmann; Prof. Dr. Dr. Ulrich Schmidt; Prof. Dr. Markus Scholz; Prof. Dr. Andreas Suchanek; Prof. em. Peter Ulrich. Abstract Historically, crises such as the COVID-19 pandemic have prompted politicians to break up dead-locked structures and implement far-reaching reforms. Path dependencies can be interrupted in times of crisis. This volume examines the social impact of the current pandemic as well as both the long-term challenges it poses and the potential it offers from the perspective of economic and business ethics. How has the COVID-19 crisis changed the balance of power between the state, markets and business? What are the obligations of companies during a pandemic? To what extent are the fight against the coronavirus crisis and that against the climate crisis compatible? What role can and should business ethics play in times of crisis? With contributions by Prof. Dr. Michael S. Aßländer; Prof. Dr. Jörg Althammer; Prof. Dr. Martin Büscher; Niklas Dummer, M.A.; Dr. habil. Michael Ehret; Miriam Fink; Prof. Dr. Manfred Fischedick; Prof. Dr. Nils Goldschmidt; Prof. Dr. Hanns-Stephan Haas; PD Dr. Michaela Haase; Prof. Dr. Ludger Heidbrink; Prof. Dr. Ulrich Hemel; Prof. Dr. Lars Hochmann; Ruzana Liburkina, M.A.; Mark McAdam; Prof. em. Dietmar Mieth; Prof. Dr. Dr. Elmar Nass; Dr. Laura Otto; Prof. Dr. Reinhard Pfriem; Prof. Dr. Ingo Pies; Prof. em. Birger Priddat; Frauke Remmers; Dr. Bastian Ronge; Prof. Dr. Hartmut Rosa; Prof. em. Hermann Sautter; Dr. Philipp Schepelmann; Prof. Dr. Dr. Ulrich Schmidt; Prof. Dr. Markus Scholz; Prof. Dr. Andreas Suchanek; Prof. em. Peter Ulric

    Black holes and black strings of N=2, d=5 supergravity in the H-FGK formalism

    Get PDF
    We study general classes and properties of extremal and non-extremal static black-hole solutions of N=2, d=5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the black-hole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K_3 \times S^1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.Comment: 33 pages. Revised version: references added. No other change

    The Tensor Hierarchies of Pure N=2,d=4,5,6 Supergravities

    Get PDF
    We study the supersymmetric tensor hierarchy of pure (gauged) N=2,d=4,5,6 supergravity and compare them with those of the pure, ungauged, theories (worked out by Gomis and Roest for d=5) and the predictions of the Kac-Moody approach made by Kleinschmidt and Roest. We find complete agreement in the ungauged case but we also find that, after gauging, new Stueckelberg symmetries reduce the number of independent "physical" top-forms. The analysis has to be performed to all orders in fermion fields. We discuss the construction of the worldvolume effective actions for the p-branes which are charged with respect to the (p+1)-form potentials and the relations between the tensor hierarchies and p-branes upon dimensional reduction.Comment: LaTeX2e file, 20 pages, 1 figure Results refined by extension of the analysis to all orders in fermion

    The Hidden Giant: How a rift pulse triggered a cascade of sector collapses and voluminous secondary mass‐transport events in the early evolution of Santorini

    Get PDF
    Volcanic island sector collapses have the potential to trigger devastating tsunamis and volcanic eruptions that threaten coastal communities and infrastructure. Considered one of the most hazardous volcano-tectonic regions in the world, the Christiana-Santorini-Kolumbo Volcanic Field (CSKVF) lies in the South Aegean Sea in an active rift zone. Previous studies identified an enigmatic voluminous mass-transport deposit west and east of Santorini emplaced during the early evolution of the edifice. However, the distribution and volume as well as the nature and emplacement dynamics of this deposit remained unknown up to now. In this study, we use an extensive dataset of high-resolution seismic profiles to unravel the distribution and internal architecture of this deposit. We show that it is located in all basins surrounding Santorini and has a bulk volume of up to 125 km3, thus representing the largest known volcanic island mass-transport deposit in the entire Mediterranean Sea. We propose that the deposit is the result of a complex geohazard cascade that was initiated by an intensive rift pulse. This rifting event triggered a series of smaller precursory mass-transport events before large-scale sector collapses occurred on the northeastern flank of the extinct Christiana Volcano and on the southeastern flank of the nascent Santorini. This was followed by the emplacement of large-scale secondary sediment failures on the slopes of Santorini, which transitioned into debris and turbidity flows that traveled far into the neighboring rift basins. Following this cascade, a distinct change in the volcanic behavior of the CSKVF occurred, suggesting a close relationship between crustal extension, mass transport, and volcanism. Cascading geohazards seem to be more common in the evolution of marine volcanic systems than previously appreciated. Wider awareness and a better understanding of cascading effects are crucial for more holistic hazard assessments

    The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review

    Get PDF
    PMCID: PMC3408383The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/75. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Crustal structure of the Peruvian continental margin from wide-angle seismic studies

    Get PDF
    Active seismic investigations along the Pacific margin off Peru were carried out using ocean bottom hydrophones and seismometers. The structure and the P-wave velocities of the obliquely subducting oceanic Nazca Plate and overriding South American Plate from 8°S to 15°S were determined by modelling the wide-angle seismic data combined with the analysis of reflection seismic data. Three detailed cross-sections of the subduction zone of the Peruvian margin and one strike-line across the Lima Basin are presented here. The oceanic crust of the Nazca Plate, with a thin pelagic sediment cover, ranging from 0–200 m, has an average thickness of 6.4 km. At 8°S it thins to 4 km in the area of Trujillo Trough, a graben-like structure. Across the margin, the plate boundary can be traced to 25 km depth. As inferred from the velocity models, a frontal prism exists adjacent to the trench axis and is associated with the steep lower slope. Terrigeneous sediments are proposed to be transported downslope due to gravitational forces and comprise the frontal prism, characterized by low seismic P-wave velocities. The lower slope material accretes against a backstop structure, which is defined by higher seismic P-wave velocities, 3.5–6.0 km s−1. The large variations in surface slope along one transect may reflect basal removal of upper plate material, thus steepening the slope surface. Subduction processes along the Peruvian margin are dominated by tectonic erosion indicated by the large margin taper, the shape and bending of the subducting slab, laterally varying slope angles and the material properties of the overriding continental plate. The erosional mechanisms, frontal and basal erosion, result in the steepening of the slope and consequent slope failure
    corecore