186 research outputs found

    Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: The Hoorn study

    Get PDF
    Mildly impaired renal function is associated with cardiovascular morbidity and mortality. There are indications that endothelial dysfunction and/or chronic inflammation, which play an important role in atherothrombosis, are present in early stages of renal insufficiency. This study investigated whether and to which extent endothelial dysfunction and inflammation were related to renal function and contributed to renal function-associated cardiovascular mortality in a population-based cohort (n = 613), aged 50 to 75 yr, that was followed with a median duration of 12.5 yr. During follow-up, 192 individuals died (67 of cardiovascular causes). At baseline, renal function was estimated with serum creatinine, the Cockcroft-Gault formula, and the Modification of Diet in Renal Disease equation of GFR (eGFR). Endothelial function was estimated by plasma von Willebrand factor, soluble vascular cell adhesion molecule-1, and the urinary albumin-creatinine ratio. Inflammatory activity was estimated by plasma C-reactive protein and soluble intercellular adhesion molecule-1. Renal function was mildly impaired (mean eGFR 68 ± 12 ml/min per 1.73

    Effect of Homocysteine-Lowering Treatment With Folic Acid and B Vitamins on Risk of Type 2 Diabetes in Women: A Randomized, Controlled Trial

    Get PDF
    OBJECTIVE: Homocysteinemia may play an etiologic role in the pathogenesis of type 2 diabetes by promoting oxidative stress, systemic inflammation, and endothelial dysfunction. We investigated whether homocysteine-lowering treatment by B vitamin supplementation prevents the risk of type 2 diabetes. RESEARCH DESIGN AND METHODS: The Women's Antioxidant and Folic Acid Cardiovascular Study (WAFACS), a randomized, double-blind, placebo-controlled trial of 5,442 female health professionals aged ≥40 years with a history of cardiovascular disease (CVD) or three or more CVD risk factors, included 4,252 women free of diabetes at baseline. Participants were randomly assigned to either an active treatment group (daily intake of a combination pill of 2.5 mg folic acid, 50 mg vitamin B6, and 1 mg vitamin B12) or to the placebo group. RESULTS: During a median follow-up of 7.3 years, 504 women had an incident diagnosis of type 2 diabetes. Overall, there was no significant difference between the active treatment group and the placebo group in diabetes risk (relative risk 0.94 [95% CI 0.79–1.11]; P = 0.46), despite significant lowering of homocysteine levels. Also, there was no evidence for effect modifications by baseline intakes of dietary folate, vitamin B6, and vitamin B12. In a sensitivity analysis, the null result remained for women compliant with their study pills (0.92 [0.76–1.10]; P = 0.36). CONCLUSIONS: Lowering homocysteine levels by daily supplementation with folic acid and vitamins B6 and B12 did not reduce the risk of developing type 2 diabetes among women at high risk for CVD

    Risk of thrombotic complications in influenza versus COVID-19 hospitalized patients

    Get PDF
    Background: Whereas accumulating studies on patients with coronavirus disease 2019 (COVID-19) report high incidences of thrombotic complications, large studies on clinically relevant thrombosis in patients with other respiratory tract infections are lacking. How this high risk in COVID-19 patients compares to those observed in hospitalized patients with other viral pneumonias such as influenza is unknown.Objectives: To assess the incidence of venous and arterial thrombotic complications in hospitalized patients with influenza as opposed to that observed in hospitalized patients with COVID-19.Methods: This was a retrospective cohort study; we used data from Statistics Netherlands (study period: 2018) on thrombotic complications in hospitalized patients with influenza. In parallel, we assessed the cumulative incidence of thrombotic complications-adjusted for competing risk of death-in patients with COVID-19 in three Dutch hospitals (February 24 to April 26, 2020).Results: Of the 13 217 hospitalized patients with influenza, 437 (3.3%) were diagnosed with thrombotic complications, versus 66 (11%) of the 579 hospitalized patients with COVID-19. The 30-day cumulative incidence of any thrombotic complication in influenza was 11% (95% confidence interval [CI], 9.4-12) versus 25% (95% CI, 18-32) in COVID-19. For venous thrombotic (VTC) complications and arterial thrombotic complications alone, these numbers were, respectively, 3.6% (95% CI, 2.7-4.6) and 7.5% (95% CI, 6.3-8.8) in influenza versus 23% (95% CI, 16-29) and 4.4% (95% CI, 1.9-8.8) in COVID-19.Conclusions: The incidence of thrombotic complications in hospitalized patients with influenza was lower than in hospitalized patients with COVID-19. This difference was mainly driven by a high risk of VTC complications in the patients with COVID-19 admitted to the Intensive Care Unit. Remarkably, patients with influenza were more often diagnosed with arterial thrombotic complications.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care

    Amplification of a Zygosaccharomyces bailii DNA Segment in Wine Yeast Genomes by Extrachromosomal Circular DNA Formation

    Get PDF
    We recently described the presence of large chromosomal segments resulting from independent horizontal gene transfer (HGT) events in the genome of Saccharomyces cerevisiae strains, mostly of wine origin. We report here evidence for the amplification of one of these segments, a 17 kb DNA segment from Zygosaccharomyces bailii, in the genome of S. cerevisiae strains. The copy number, organization and location of this region differ considerably between strains, indicating that the insertions are independent and that they are post-HGT events. We identified eight different forms in 28 S. cerevisiae strains, mostly of wine origin, with up to four different copies in a single strain. The organization of these forms and the identification of an autonomously replicating sequence functional in S. cerevisiae, strongly suggest that an extrachromosomal circular DNA (eccDNA) molecule serves as an intermediate in the amplification of the Z. bailii region in yeast genomes. We found little or no sequence similarity at the breakpoint regions, suggesting that the insertions may be mediated by nonhomologous recombination. The diversity between these regions in S. cerevisiae represents roughly one third the divergence among the genomes of wine strains, which confirms the recent origin of this event, posterior to the start of wine strain expansion. This is the first report of a circle-based mechanism for the expansion of a DNA segment, mediated by nonhomologous recombination, in natural yeast populations

    Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae

    Get PDF
    The applicability of transcriptomics for functional genome analysis rests on the assumption that global information on gene function can be inferred from transcriptional regulation patterns. This study investigated whether Saccharomyces cerevisiae genes that show a consistently higher transcript level under anaerobic than aerobic conditions do indeed contribute to fitness in the absence of oxygen. Tagged deletion mutants were constructed in 27 S. cerevisiae genes that showed a strong and consistent transcriptional upregulation under anaerobic conditions, irrespective of the nature of the growth-limiting nutrient (glucose, ammonia, sulfate or phosphate). Competitive anaerobic chemostat cultivation showed that only five out of the 27 mutants (eug1Δ, izh2Δ, plb2Δ, ylr413wΔ and yor012wΔ) conferred a significant disadvantage relative to a tagged reference strain. The implications of this study are that: (i) transcriptome analysis has a very limited predictive value for the contribution of individual genes to fitness under specific environmental conditions, and (ii) competitive chemostat cultivation of tagged deletion strains offers an efficient approach to select relevant leads for functional analysis studies

    Homocysteine Levels in Chronic Gastritis and Other Conditions: Relations to Incident Cardiovascular Disease and Dementia

    Get PDF
    Background Homocysteine levels in circulation are determined by several factors and hyperhomocysteinemia is reportedly associated with cardiovascular diseases and dementia. The aim of this study is to determine the relation of chronic gastritis and other conditions to homocysteine levels and their relation to incident cardiovascular diseases and dementia. Methods An adult population-based cohort (N = 488) was screened for H. pylori infection, gastro-duodenitis (endoscopic biopsies), disease history, and lifestyle factors. Blood samples were analyzed for pepsinogen I and II (gastric function), vitamin B12, folate, homocysteine, and cystatin C (renal function). The methylenetetrahydrofolate reductase C677T polymorphism reportedly associated with hyperhomocysteinemia was analyzed by pyrosequencing. Incident cardiovascular diseases and dementia were monitored during a median follow-up interval of 10 years. Results At baseline, there was a positive relation of S-homocysteine to male gender, age, S-cystatin C, methylenetetrahydrofolate reductase 677TT genotype and atrophic gastritis. During follow-up, cardiovascular diseases occurred in 101/438 and dementia in 25/488 participants, respectively. Logistic regression analysis (adjusting for gender, age at baseline, follow-up interval, BMI, smoking, alcohol consumption, NSAID use, P-cholesterol, and P-triglycerides) showed an association of S-homocysteine higher than 14.5 μmol/l to cardiovascular diseases (OR 2.05 [95% c.i. 1.14–3.70]), but not to dementia overall. Conclusions Gender, age, vitamin B12, folate, renal function, atrophic gastritis and the methylenetetrahydrofolate 677TT genotype were significant determinants of homocysteine levels, which were positively related to incident cardiovascular diseases

    ATP-dependent chromatin remodeling shapes the DNA replication landscape.

    Get PDF
    The eukaryotic DNA replication machinery must traverse every nucleosome in the genome during S phase. As nucleosomes are generally inhibitory to DNA-dependent processes, chromatin structure must undergo extensive reorganization to facilitate DNA synthesis. However, the identity of chromatin-remodeling factors involved in replication and how they affect DNA synthesis is largely unknown. Here we show that two highly conserved ATP-dependent chromatin-remodeling complexes in Saccharomyces cerevisiae, Isw2 and Ino80, function in parallel to promote replication fork progression. As a result, Isw2 and Ino80 have especially important roles for replication of late-replicating regions during periods of replication stress. Both Isw2 and Ino80 complexes are enriched at sites of replication, suggesting that these complexes act directly to promote fork progression. These findings identify ATP-dependent chromatin-remodeling complexes that promote DNA replication and define a specific stage of replication that requires remodeling for normal function

    Pervasive and Persistent Redundancy among Duplicated Genes in Yeast

    Get PDF
    The loss of functional redundancy is the key process in the evolution of duplicated genes. Here we systematically assess the extent of functional redundancy among a large set of duplicated genes in Saccharomyces cerevisiae. We quantify growth rate in rich medium for a large number of S. cerevisiae strains that carry single and double deletions of duplicated and singleton genes. We demonstrate that duplicated genes can maintain substantial redundancy for extensive periods of time following duplication (∼100 million years). We find high levels of redundancy among genes duplicated both via the whole genome duplication and via smaller scale duplications. Further, we see no evidence that two duplicated genes together contribute to fitness in rich medium substantially beyond that of their ancestral progenitor gene. We argue that duplicate genes do not often evolve to behave like singleton genes even after very long periods of time

    Predicting Protein Phenotypes Based on Protein-Protein Interaction Network

    Get PDF
    BACKGROUND: Identifying associated phenotypes of proteins is a challenge of the modern genetics since the multifactorial trait often results from contributions of many proteins. Besides the high-through phenotype assays, the computational methods are alternative ways to identify the phenotypes of proteins. METHODOLOGY/PRINCIPAL FINDINGS: Here, we proposed a new method for predicting protein phenotypes in yeast based on protein-protein interaction network. Instead of only the most likely phenotype, a series of possible phenotypes for the query protein were generated and ranked according to the tethering potential score. As a result, the first order prediction accuracy of our method achieved 65.4% evaluated by Jackknife test of 1,267 proteins in budding yeast, much higher than the success rate (15.4%) of a random guess. And the likelihood of the first 3 predicted phenotypes including all the real phenotypes of the proteins was 70.6%. CONCLUSIONS/SIGNIFICANCE: The candidate phenotypes predicted by our method provided useful clues for the further validation. In addition, the method can be easily applied to the prediction of protein associated phenotypes in other organisms
    corecore