308 research outputs found

    Transmission electron microscopy and ferromagnetic resonance investigations of tunnel magnetic junctions using Co2MnGe Heusler alloy as magnetic electrodes

    Full text link
    HRTEM, nano-beam electronic diffraction, energy dispersive X-rays scanning spectroscopy, Vibrating Sample Magnetometry (VSM) and FerroMagnetic Resonance (FMR) techniques are used in view of comparing (static and dynamic) magnetic and structural properties of Co2MnGe (13 nm)/Al2O3 (3 nm)/Co (13 nm) tunnel magnetic junctions (TMJ), deposited on various single crystalline substrates (a-plane sapphire, MgO(100) and Si(111)). They allow for providing a correlation between these magnetic properties and the fine structure investigated at atomic scale. The Al2O3 tunnel barrier is always amorphous and contains a large concentration of Co atoms, which, however, is significantly reduced when using a sapphire substrate. The Co layer is polycrystalline and shows larger grains for films grown on a sapphire substrate. The VSM investigation reveals in-plane anisotropy only for samples grown on a sapphire substrate. The FMR spectra of the TMJs are compared to the obtained ones with a single Co and Co2MnGe films of identical thickness deposited on a sapphire substrate. As expected, two distinct modes are detected in the TMJs while only one mode is observed in each single film. For the TMJ grown on a sapphire substrate the FMR behavior does not significantly differ from the superposition of the individual spectra of the single films, allowing for concluding that the exchange coupling between the two magnetic layers is too small to give rise to observable shifts. For TMJs grown on a Si or on a MgO substrate the resonance spectra reveal one mode which is nearly identical to the obtained one in the single Co film, while the other observed resonance shows a considerably smaller intensity and cannot be described using the magnetic parameters appropriate to the single Co2MnGe film.Comment: 11 pages, 10 figures, Thin Solid Film

    Magnetization dynamics in Co2MnGe/Al2MnGe/Al2O3$/Co tunnel junctions grown on different substrates

    Full text link
    We study static and dynamic magnetic properties of Co2MnGe (13 nm)/Al2O3 (3 nm)/Co (13 nm) tunnel magnetic junctions (TMJ), deposited on various single crystalline substrates (a-plane sapphire, MgO(100), Si(111)). The results are compared to the magnetic properties of Co and of Co2_{2}MnGe single films lying on sapphire substrates. X-rays diffraction always shows a (110) orientation of the Co2_{2}MnGe films. Structural observations obtained by high resolution transmission electron microscopy confirmed the high quality of the TMJ grown on sapphire. Our vibrating sample magnetometry measurements reveal in-plane anisotropy only in samples grown on a sapphire substrate. Depending on the substrate, the ferromagnetic resonance spectra of the TMJs, studied by the microstrip technique, show one or two pseudo-uniform modes. In the case of MgO and of Si substrates only one mode is observed: it is described by magnetic parameters (g-factor, effective magnetization, in-plane magnetic anisotropy) derived in the frame of a simple expression of the magnetic energy density; these parameters are practically identical to those obtained for the Co single film. With a sapphire substrate two modes are present: one of them does not appreciably differ from the observed mode in the Co single film while the other one is similar to the mode appearing in the Co2_{2}MnGe single film: their magnetic parameters can thus be determined independently, using a classical model for the energy density in the absence of interlayer exchange coupling.Comment: 5 pages, 6 figure

    Atomic scale observation of phase separation and formation of silicon clusters in Hf higk-κ silicates

    Get PDF
    International audienceHafnium silicate films were fabricated by RF reactive magnetron sputtering technique. Fine microstructural analyses of the films were performed by means of high-resolution transmission electron microscopy and atom probe tomography. A thermal treatment of as-grown homogeneous films leads to a phase separation process. The formation of SiO2 and HfO2 phases as well as pure Si one was revealed. This latter was found to be amorphous Si nanoclusters, distributed uniformly in the film volume. Their mean diameter and density were estimated to be about 2.8 nm and (2.960.4) 1017 Si-ncs/cm3, respectively. The mechanism of the decomposition process was proposed. The obtained results pave the way for future microelectronic and photonic applications of Hf-based high-j dielectrics with embedded Si nanocluster

    Evaluation of a patient-specific finite-element model to simulate conservative treatment in adolescent idiopathic scoliosis

    Get PDF
    PublishedJournal ArticleAuthor's accepted manuscript.Study design: Retrospective validation study. Objectives: To propose a method to evaluate, from a clinical standpoint, the ability of a finite-element model (FEM) of the trunk to simulate orthotic correction of spinal deformity and to apply it to validate a previously described FEM. Summary of background data: Several FEMs of the scoliotic spine have been described in the literature. These models can prove useful in understanding the mechanisms of scoliosis progression and in optimizing its treatment, but their validation has often been lacking or incomplete. Methods: Three-dimensional (3D) geometries of 10 patients before and during conservative treatment were reconstructed from biplanar radiographs. The effect of bracing was simulated by modeling displacements induced by the brace pads. Simulated clinical indices (Cobb angle, T1-T12 and T4-T12 kyphosis, L1-L5 lordosis, apical vertebral rotation, torsion, rib hump) and vertebral orientations and positions were compared to those measured in the patients' 3D geometries. Results: Errors in clinical indices were of the same order of magnitude as the uncertainties due to 3D reconstruction; for instance, Cobb angle was simulated with a root mean square error of 5.7°, and rib hump error was 5.6°. Vertebral orientation was simulated with a root mean square error of 4.8° and vertebral position with an error of 2.5 mm. Conclusions: The methodology proposed here allowed in-depth evaluation of subject-specific simulations, confirming that FEMs of the trunk have the potential to accurately simulate brace action. These promising results provide a basis for ongoing 3D model development, toward the design of more efficient orthoses.ParisTech BiomecAM chair programProteorParisTechYves Cotrel Foundation

    Complementary use of TEM and APT for the investigation of steels nanostructured by severe plastic deformation

    Full text link
    The properties of bulk nanostructured materials are often controlled by atomic scale features like segregation along defects or composition gradients. Here we discuss about the complimentary use of TEM and APT to obtain a full description of nanostructures. The advantages and limitations of both techniques are highlighted on the basis of experimental data collected in severely deformed steels with a special emphasis on carbon spatial distribution

    DNA adducts in fish following an oil spill exposure

    Get PDF
    On 12 December 1999, one third of the load of the Erika tanker, amounting to about 10,000 t crude oil flowed into sea waters close to the French Atlantic Coast. This oil contained polycyclic aromatic compounds (PAC) that are known to be genotoxic. Genotoxic effects induce DNA adducts formation, which can thus be used as pollution biomarkers. Here, we assessed the genotoxic impact of the “Erika” oil spill by DNA adducts detection in the liver of immature fishes (Solea solea) from four locations of the French Brittany coasts. Two months after the spill, a high amount of DNA adducts was found in samples from all locations, amounting to 92–290 DNA adduct per 109 nucleotides. Then total DNA adduct levels decreased to reach about 50 adducts per 109 nucleotides nine months after the spill. In vitro experiments using human cell cultures and fish liver microsomes evidence the genotoxicity of the Erika fuel. They also prove the formation of reactive species able to create DNA adducts. Furthermore, in vitro and in vivo DNA adducts fingerprints are similar, thus confirming that DNA adducts are a result of the oil spill

    Atomic scale characterization of deformation induced interfacial mixing in a Cu/V nanocomposite wire

    Full text link
    The microstructure of a Cu/V nanocomposite wire processed by cold drawing was investigated by high resolution transmission electron microscopy and atom probe tomography. The experimental data clearly reveal some deformation induced interfacial mixing where the vanadium filaments are nanoscaled. The mixed layer is a 2nm wide vanadium gradient in the fcc Cu phase. This mechanical mixing leads to the local fragmentation and dissolution of the filaments and to the formation of vanadium super saturated solid solutions in fcc Cu

    Demography and disorders of German Shepherd Dogs under primary veterinarycare in the UK

    Get PDF
    The German Shepherd Dog (GSD) has been widely used for a variety of working roles. However, concerns for the health and welfare of the GSD have been widely aired and there is evidence that breed numbers are now in decline in the UK. Accurate demographic and disorder data could assist with breeding and clinical prioritisation. The VetCompassTM Programme collects clinical data on dogs under primary veterinary care in the UK. This study included all VetCompassTM dogs under veterinary care during 2013. Demographic, mortality and clinical diagnosis data on GSDs were extracted and reported

    STEM nanoanalysis of Au/Pt/Ti-Si3N4 interfacial defects and reactions during local stress of SiGe HBTs

    Get PDF
    A new insight on the behavior of metal contact-insulating interfaces in SiGe heterojunction bipolar transistor is given by high-performance aberration-corrected scanning transmission electron microscopy (STEM) analysis tools equipped with sub-nanometric probe size. It is demonstrated that the presence of initial defects introduced during technological processes play a major role in the acceleration of degradation mechanisms of the structure during stress. A combination of energy-filtered transmission electron microscopy analysis with high angle annular dark field STEM and energy dispersive spectroscopy provides strong evidence that migration of Au-Pt from the metal contacts to Ti/Si3N4 interface is one of the precursors to species interdiffusion and reactions. High current densities and related local heating effects induce the evolution of the pure Ti initial layer into mixture layer composed of Ti, O, and N. Local contamination of Ti layers by fluorine atoms is also pointed out, as well as rupture of TiN thin barrier layer
    corecore