1,555 research outputs found

    Adjustable versus

    Full text link
    ABSTRACT Purpose: To compare the surgical results of adjustable and non-adjustable horizontal strabismus surgery for concomitant horizontal strabismus. Methods: The charts of 231 patients, who underwent horizontal strabismus surgery, selected using probabilistic sampling, were retrospectively reviewed. Patients were divided into two groups according to the surgical technique used and strabismus type. The adjustable suture technique was used for 107 patients (Group 1), and non-adjustable or conventional surgery was performed in the remaining 124 patients (Group 2). Patients with esotropia (ET) or exotropia (XT) of <55 prism diopters (PD) at distance were included. The following exclusion criteria were applied: all intermittent or vertical deviations, anisotropias >5 PD, syndromes, restrictive or paretic strabismus, reoperations, botulinum toxin injection, and patients postoperatively followed up for <3 months. Surgical success was set to a range between orthotropia and an esodeviation of up to 10 PD for both ET and XT. Results: An amblyopia rate >50% was present in all subgroups. Significant differences between strabismus groups submitted to adjustable technique and non-adjustable on postoperative day 1 were observed (p=0.00 for ET and p=0.01 for XT) and at the last visit for the XT group with a follow-up of at least 1 year (p=0.05). Conclusion: The adjustable suture technique produced a higher success rate than non-adjustable strabismus surgery for both ET and XT groups on postoperative day 1. For XT patients, the adjustable suture technique appears to produce better surgical results than non-adjustable surgery, when the surgical goal is long-lasting maintenance of a small hypercorrection

    Evaluation of basal melting parameterisations using in situ ocean and melting observations from the Amery Ice Shelf, East Antarctica

    Get PDF
    Ocean-driven melting of Antarctic ice shelves is causing accelerating loss of grounded ice from the Antarctic continent. However, the ocean processes governing ice shelf melting are not well understood, contributing to uncertainty in projections of Antarctica's contribution to sea level. Here, we analyse oceanographic data and in situ measurements of ice shelf melt collected from an instrumented mooring beneath the centre of the Amery Ice Shelf, East Antarctica. This is the first direct measurement of basal melting from the Amery Ice Shelf and was made through the novel application of an upward-facing acoustic Doppler current profiler (ADCP). ADCP data were also used to map a region of the ice base, revealing a steep topographic feature or “scarp” in the ice with vertical and horizontal scales of ∼ 20 and ∼ 40 m, respectively. The annually averaged ADCP-derived melt rate of 0.51 ± 0.18 m yr−1 is consistent with previous modelling results and glaciological estimates. There is significant seasonal variation around the mean melt rate, with a 40 % increase in melting in May and a 60 % decrease in September. Melting is driven by temperatures ∼ 0.2 ∘C above the local freezing point and background and tidal currents, which have typical speeds of 3.0 and 10.0 cm s−1, respectively. We use the coincident measurements of ice shelf melt and oceanographic forcing to evaluate parameterisations of ice–ocean interactions and find that parameterisations in which there is an explicit dependence of the melt rate on current speed beneath the ice tend to overestimate the local melt rate at AM06 by between 200 % and 400 %, depending on the choice of drag coefficient. A convective parameterisation in which melting is a function of the slope of the ice base is also evaluated and is shown to underpredict melting by 20 % at this site. By combining these new estimates with available observations from other ice shelves, we show that the commonly used current speed-dependent parameterisation overestimates melting at all but the coldest and most energetic cavity conditions.</p

    Extinction, Persistence, and Evolution

    Get PDF
    Extinction can occur for many reasons. We have a closer look at the most basic form, extinction of populations with stable but insufficient reproduction. Then we move on to competing populations and evolutionary suicide

    Braincase of panphagia protos (dinosauria, sauropodomorpha)

    Get PDF
    We describe a partial braincase of the basal sauropodomorph Panphagia protos from the Upper Triassic (midCarnian) horizons of the Ischigualasto Formation. The disarticulated braincase from a subadult individual includes one frontal, both parietals, one prootic, and the supraoccipital. The frontal is longer anteroposteriorly than it is wide transversely, has a small anterolateral process, and an elongate oval depression for the olfactory bulb. The supraoccipital is broader transversely than it is deep dorsoventrally and lacks a pronounced median nuchal eminence. Some braincase features that characterize more derived basal sauropodomorphs are not present in Panphagia, including a broader frontal and reduced anterior tympanic and floccular recesses. Panphagia appears to represent an early stage in the evolution of sauropodomorph dinosaurs.Describimos la caja craneana parcial del sauropodomorfo basal Panphagia protos proveniente de horizontes del Triásico superior (Carniano medio) de la Formación Ischigualasto. La caja craneana desarticulada es de un individuo sub-adulto e incluye un frontal, dos parietales, un proótico y el supraoccipital. El frontal es más largo anteroposteriormente que ancho transversalmente, tiene un pequeño proceso anterolateral y una depresión alargada oval para el bulbo olfatorio. El supraoccipital es transversalmente más ancho que dorsoventralmente alto y carece de una eminencia nucal media pronunciada. Algunas de las características que caracterizan los neurocráneos de sauropodomorfos basales más derivados no están presentes en Panphagia, incluyendo el frontal ancho y la reducción de las cavidades timpánica anterior y flocular. Panphagia parece representar una etapa temprana en la evolución de los dinosaurios sauropodomorfos.Fil: Martínez, Ricardo Néstor. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Fisicas y Naturales. Instituto y Museo de Ciencias Naturales; ArgentinaFil: Haro, Jose Augusto. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Fisicas y Naturales. Instituto y Museo de Ciencias Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Apaldetti, Graciela Cecilia. Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Fisicas y Naturales. Instituto y Museo de Ciencias Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Eddy and tidal driven basal melting of the Totten and Moscow University ice shelves

    Get PDF
    The mass loss from the neighboring Totten and Moscow University ice shelves is accelerating and may raise global sea levels in coming centuries. Totten Glacier is mostly based on bedrock below sea level, and so is vulnerable to warm water intrusion reducing its ice shelf buttressing. The mechanisms driving the ocean forced sub-ice-shelf melting remains to be further explored. In this study, we simulate oceanic-driven ice shelf melting of the Totten (TIS) and Moscow University ice shelves (MUIS) using a high spatiotemporal resolution model that resolves both eddy and tidal processes. We selected the year 2014 as representative of the period 1992 to 2017 to investigate how basal melting varies on spatial and temporal scales. We apply the wavelet coherence method to investigate the interactions between the two ice shelves in time-frequency space and hence estimate the contributions from tidal (&lt;1.5 days) and eddy (2-35 days) components of the ocean heat transport to the basal melting of each ice shelf. In our simulation, the 2014 mean basal melt rate for TIS is 6.7 m yr-1 (42 Gt yr-1) and 9.7 m yr-1 (52 Gt yr-1) for MUIS. We find high wavelet coherence in the eddy dominated frequency band between the two ice shelves over almost the whole year. The wavelet coherence along five transects across the ice shelves suggests that TIS basal melting is dominated by eddy processes, while MUIS basal melting is dominated by tidal processes. The eddy-dominated basal melt for TIS is probably due to the large and convoluted bathymetric gradients beneath the ice shelf, weakening higher frequency tidal mode transport. This illustrates the key role of accurate bathymetric data plays in simulating on-going and future evolution of these important ice shelves

    Reaction Time of a Group of Physics Students

    Full text link
    The reaction time of a group of students majoring in Physics is reported here. Strong co-relation between fatigue, reaction time and performance have been seen and may be useful for academicians and administrators responsible of working out time-tables, course structures, students counsellings etc.Comment: 10 pages, 4 figure

    Grouping practices in the primary school: what influences change?

    Get PDF
    During the 1990s, there was considerable emphasis on promoting particular kinds of pupil grouping as a means of raising educational standards. This survey of 2000 primary schools explored the extent to which schools had changed their grouping practices in responses to this, the nature of the changes made and the reasons for those changes. Forty eight percent of responding schools reported that they had made no change. Twenty two percent reported changes because of the literacy hour, 2% because of the numeracy hour, 7% because of a combination of these and 21% for other reasons. Important influences on decisions about the types of grouping adopted were related to pupil learning and differentiation, teaching, the implementation of the national literacy strategy, practical issues and school self-evaluation

    Future sea level change from Antarctica's Lambert-Amery glacial system

    Get PDF
    Future global mean sea level (GMSL) change is dependent on the complex response of the Antarctic ice sheet to ongoing changes and feedbacks in the climate system. The Lambert-Amery glacial system has been observed to be stable over the recent period yet is potentially at risk of rapid grounding line retreat and ice discharge given that a significant volume of its ice is grounded below sea level, making its future contribution to GMSL uncertain. Using a regional ice sheet model of the Lambert-Amery system, we find that under a range of future warming and extreme scenarios, the simulated grounding line remains stable and does not trigger rapid mass loss from grounding line retreat. This allows for increased future accumulation to exceed the mass loss from ice dynamical changes. We suggest that the Lambert-Amery glacial system will remain stable or gain ice mass and mitigate a portion of potential future sea level rise over the next 500 years, with a range of +3.6 to −117.5 mm GMSL equivalent
    corecore