12 research outputs found

    Uniclust databases of clustered and deeply annotated protein sequences and alignments.

    No full text
    We present three clustered protein sequence databases, Uniclust90, Uniclust50, Uniclust30 and three databases of multiple sequence alignments (MSAs), Uniboost10, Uniboost20 and Uniboost30, as a resource for protein sequence analysis, function prediction and sequence searches. The Uniclust databases cluster UniProtKB sequences at the level of 90%, 50% and 30% pairwise sequence identity. Uniclust90 and Uniclust50 clusters showed better consistency of functional annotation than those of UniRef90 and UniRef50, owing to an optimised clustering pipeline that runs with our MMseqs2 software for fast and sensitive protein sequence searching and clustering. Uniclust sequences are annotated with matches to Pfam, SCOP domains, and proteins in the PDB, using our HHblits homology detection tool. Due to its high sensitivity, Uniclust contains 17% more Pfam domain annotations than UniProt. Uniboost MSAs of three diversities are built by enriching the Uniclust30 MSAs with local sequence matches from MMseqs2 profile searches through Uniclust30. All databases can be downloaded from the Uniclust server at uniclust.mmseqs.com. Users can search clusters by keywords and explore their MSAs, taxonomic representation, and annotations. Uniclust is updated every two months with the new UniProt release

    Going to extremes: A metagenomic journey into the dark matter of life

    No full text
    The Virus-X—Viral Metagenomics for Innovation Value—project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of lif
    corecore