1,069 research outputs found

    Total Syntheses of Cyanthiwigins B, F, and G

    Get PDF
    A concise and versatile approach toward the preparation of the cyanthiwigin family of cyathane natural products is described. By leveraging a unique double asymmetric catalytic alkylation procedure it is possible to quickly establish two of the most critical stereocenters of the cyanthiwigin framework with high levels of selectivity and expediency. The synthetic route additionally employs both a tandem ring-closing cross-metathesis reaction, and an aldehyde-olefin radical cyclization process, in order to rapidly arrive at the tricyclic cyathane core of the cyanthiwigin molecules. From this unifying intermediate, the preparations of cyanthiwigins B, F, and G are attained swiftly and without the need for protecting groups

    Signature of relic heavy stable neutrinos in underground experiments

    Get PDF
    Considering heavy stable neutrinos of 4th generation we calculate the relic density of such neutrinos in the Universe. Taking into account the condensation of heavy neutrinos in the Galaxy and applying the results of calculations to experimental data from underground experiments on search for WIMPs in elastic neutral current scattering on nuclei we found an exclusion region of neutrino mass 60 GeV < m < 290 GeV. The bounds obtained from present underground experiments while confirming the previous bounds derived from analysis of cosmic ray spectra are more relible ones. We discuss also the first indication of elastic scattering induced by WIMP in DAMA experiment finding a very narrow window of neutrino mass 45 GeV < m < 50 GeV compatible with the possible signal rate in the detector.Comment: 12 pages, 3 figure

    Symmetry and sexual dimorphism in human faces: interrelated preferences suggest both signal quality

    Get PDF
    Symmetry and masculinity in human faces have been proposed to be cues to the quality of the owner. Accordingly, symmetry is generally found attractive in male and female faces and femininity is attractive in female faces. Women’s preferences for male facial masculinity vary in ways that may maximise genetic benefits to women’s offspring. Here we examine same- and opposite-sex preferences for both traits (Study 1) and intercorrelations between preferences for symmetry and sexual dimorphism in faces (Study 1, Study 2) using computer manipulated faces. For symmetry, we found that male and female judges preferred symmetric faces more when judging faces of the opposite-sex than when judging same-sex faces. A similar pattern was seen for sexual dimorphism (i.e. women preferred more masculine male faces than men did), but women also showed stronger preferences for femininity in female faces than men reported. This suggests that women are more concerned with female femininity than are men. We also found that in women preferences for symmetry were positively correlated with preferences for masculinity in male faces and that in men preferences for symmetry were positively correlated with preferences for femininity in female faces. These latter findings suggest that symmetry and sexual dimorphism advertise a common quality in faces or that preferences for these facial cues are dependent on a common quality in the judges. Collectively, our findings support the view that preferences for symmetry and sexual dimorphism are related to mechanisms involved in sexual selection and mate choice rather than functionless by-products of other perceptual mechanisms

    Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients

    Get PDF
    In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature–diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism

    Seeing two faces together: preference formation in humans and rhesus macaques

    Get PDF
    Humans, great apes and old world monkeys show selective attention to faces depending on conspecificity, familiarity, and social status supporting the view that primates share similar face processing mechanisms. Although many studies have been done on face scanning strategy in monkeys and humans, the mechanisms influencing viewing preference have received little attention. To determine how face categories influence viewing preference in humans and rhesus macaques (Macaca mulatta), we performed two eye-tracking experiments using a visual preference task whereby pairs of faces from different species were presented simultaneously. The results indicated that viewing time was significantly influenced by the pairing of the face categories. Humans showed a strong bias towards an own-race face in an Asian–Caucasian condition. Rhesus macaques directed more attention towards non-human primate faces when they were paired with human faces, regardless of the species. When rhesus faces were paired with faces from Barbary macaques (Macaca sylvanus) or chimpanzees (Pan troglodytes), the novel species’ faces attracted more attention. These results indicate that monkeys’ viewing preferences, as assessed by a visual preference task, are modulated by several factors, species and dominance being the most influential

    Light Sterile Neutrino from extra dimensions and Four-Neutrino Solutions to Neutrino Anomalies

    Get PDF
    We propose a four-neutrino model which can reconcile the existing data coming from underground experiments in terms of neutrino oscillations, together with the hint from the LSND experiment and a possible neutrino contribution to the hot dark matter of the Universe. It applies the idea that extra compact dimensions, probed only by gravity and possibly gauge-singlet fields, can lower the fundamental scales such as the Planck, string or unification scales. Our fourth light neutrino νs\nu_s (ss for sterile) is identified with the zero mode of the Kaluza-Klein states. To first approximation \nu_sterile combines with the nu_mu in order to form a Dirac neutrino with mass in the eV range leaving the other two neutrinos massless. The smallness of this mass scale (suitable for LSND and Hot Dark Matter) arises without appealing neither to a see-saw mechanism nor to a radiative mechanism, but from the volume factor associated with the canonical normalization of the wave-function of the bulk field in the compactified dimensions. % On the other hand the splitting between \nm and \nu_sterile (atmospheric scale) as well as the mass of the two other neutrinos (solar mass scale) arise from the violation of the fermion number on distant branes. We also discuss alternative scenarios involving flavour-changing interactions. In one of them \ne can be in the electron-volt range and therefore be probed in beta decay studies.Comment: 12 pages, latex, no figures, title changed, final version to be published in Phys Rev

    Integrating personality research and animal contest theory: aggressiveness in the green swordtail <i>Xiphophorus helleri</i>

    Get PDF
    &lt;p&gt;Aggression occurs when individuals compete over limiting resources. While theoretical studies have long placed a strong emphasis on context-specificity of aggression, there is increasing recognition that consistent behavioural differences exist among individuals, and that aggressiveness may be an important component of individual personality. Though empirical studies tend to focus on one aspect or the other, we suggest there is merit in modelling both within-and among-individual variation in agonistic behaviour simultaneously. Here, we demonstrate how this can be achieved using multivariate linear mixed effect models. Using data from repeated mirror trials and dyadic interactions of male green swordtails, &lt;i&gt;Xiphophorus helleri&lt;/i&gt;, we show repeatable components of (co)variation in a suite of agonistic behaviour that is broadly consistent with a major axis of variation in aggressiveness. We also show that observed focal behaviour is dependent on opponent effects, which can themselves be repeatable but were more generally found to be context specific. In particular, our models show that within-individual variation in agonistic behaviour is explained, at least in part, by the relative size of a live opponent as predicted by contest theory. Finally, we suggest several additional applications of the multivariate models demonstrated here. These include testing the recently queried functional equivalence of alternative experimental approaches, (e. g., mirror trials, dyadic interaction tests) for assaying individual aggressiveness.&lt;/p&gt

    Predicting Maximum Tree Heights and Other Traits from Allometric Scaling and Resource Limitations

    Get PDF
    Terrestrial vegetation plays a central role in regulating the carbon and water cycles, and adjusting planetary albedo. As such, a clear understanding and accurate characterization of vegetation dynamics is critical to understanding and modeling the broader climate system. Maximum tree height is an important feature of forest vegetation because it is directly related to the overall scale of many ecological and environmental quantities and is an important indicator for understanding several properties of plant communities, including total standing biomass and resource use. We present a model that predicts local maximal tree height across the entire continental United States, in good agreement with data. The model combines scaling laws, which encode the average, base-line behavior of many tree characteristics, with energy budgets constrained by local resource limitations, such as precipitation, temperature and solar radiation. In addition to predicting maximum tree height in an environment, our framework can be extended to predict how other tree traits, such as stomatal density, depend on these resource constraints. Furthermore, it offers predictions for the relationship between height and whole canopy albedo, which is important for understanding the Earth's radiative budget, a critical component of the climate system. Because our model focuses on dominant features, which are represented by a small set of mechanisms, it can be easily integrated into more complicated ecological or climate models.National Science Foundation (U.S.) (Research Experience for Undergraduates stipend)Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (Graduate Research Fellowship Program)Massachusetts Institute of Technology. Presidential FellowshipEugene V. and Clare Thaw Charitable TrustEngineering and Physical Sciences Research CouncilNational Science Foundation (U.S.) (PHY0202180)Colorado College (Venture Grant Program
    • …
    corecore