383 research outputs found

    A Model for Sustaining Participation with Hard-to-Serve Clients: The Learning Continuum

    Get PDF
    This article reports on a model developed by the Florida Crown Workforce Board in cooperation with the University of Florida\u27 s Welfare to Work Initiative. The model proposes a sustained educational experience that includes a variety of activities to enable welfare transition clients to become employed and self-sufficient. The concept of a Learning Continuum is described, and implications for Extension are discussed

    OBSERVATIONS ON NAVICULA THALLODES (BACILLARIOPHYCEAE), A BLADE-FORMING DIATOM FROM THE BERING SEA 1

    Full text link
    A thallus-forming diatom, Navicula thallodes Proschkina-Lavrenko, previously known only from the original collection at Bering Island (U.S.S.R.), has been found at Amchitka Island in the Aleutians, Alaska. The most remarkable observation of the present report is that N. thallodes may form blades up to 50 cm long, which to our knowledge is the greatest length reported for a colonial diatom. SEM observations of this diatom are presented for the first time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65176/1/j.1529-8817.1988.tb04487.x.pd

    Nodal dynamics, not degree distributions, determine the structural controllability of complex networks

    Get PDF
    Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167-173, 2011). Although the integration of control theory and network analysis is important, we argue that the application of the structural controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to the power dominating set (PDS), is all that is needed for structural controllability. This result is consistent with the well-known fact that controllability and its dual observability are generic properties of systems. We argue that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations.Comment: 1 Figures, 6 page

    Herschel/HIFI observations of spectrally resolved methylidyne signatures toward the high-mass star-forming core NGC6334I

    Get PDF
    In contrast to extensively studied dense star-forming cores, little is known about diffuse gas surrounding star-forming regions. We study molecular gas in the high-mass star-forming region NGC6334I, which contains diffuse, quiescent components that are inconspicuous in widely used molecular tracers such as CO. We present Herschel/HIFI observations of CH toward NGC6334I observed as part of the CHESS key program. HIFI resolves the hyperfine components of its J=3/2-1/2 transition, observed in both emission and absorption. The CH emission appears close to the systemic velocity of NGC6334I, while its measured linewidth of 3 km/s is smaller than previously observed in dense gas tracers such as NH3 and SiO. The CH abundance in the hot core is 7 10^-11, two to three orders of magnitude lower than in diffuse clouds. While other studies find distinct outflows in, e.g., CO and H2O toward NGC6334I, we do not detect outflow signatures in CH. To explain the absorption signatures, at least two absorbing components are needed at -3.0 and +6.5 km/s with N(CH)=7 10^13 and 3 10^13 cm^-2. Two additional absorbing clouds are found at +8.0 and 0.0 km/s, both with N(CH)=2 10^13 cm^-2. Turbulent linewidths for the four absorption components vary between 1.5 and 5.0 km/s in FWHM. We constrain physical properties of our CH clouds by matching our CH absorbers with other absorption signatures. In the hot core, molecules such as H2O and CO trace gas that is heated and dynamically influenced by outflow activity, whereas CH traces more quiescent material. The four CH absorbers have column densities and turbulent properties consistent with diffuse clouds: two are located near NGC6334, and two are unrelated foreground clouds. Local density and dynamical effects influence the chemical composition of physical components of NGC6334, causing some components to be seen in CH but not in other tracers, and vice versa.Comment: Accepted by A&A Letters; 5 pages, 1 figure; v2: minor textual and typographical change

    Rapid spectral variability of a giant flare from a magnetar in NGC 253

    Get PDF
    Magnetars are neutron stars with extremely strong magnetic fields (1013 to 1015 gauss)1,2, which episodically emit X-ray bursts approximately 100 milliseconds long and with energies of 1040 to 1041 erg. Occasionally, they also produce extremely bright and energetic giant flares, which begin with a short (roughly 0.2 seconds), intense flash, followed by fainter, longer-lasting emission that is modulated by the spin period of the magnetar3,4 (typically 2 to 12 seconds). Over the past 40 years, only three such flares have been observed in our local group of galaxies3–6, and in all cases the extreme intensity of the flares caused the detectors to saturate. It has been proposed that extragalactic giant flares are probably a subset7–11 of short γ-ray bursts, given that the sensitivity of current instrumentation prevents us from detecting the pulsating tail, whereas the initial bright flash is readily observable out to distances of around 10 to 20 million parsecs. Here we report X-ray and γ-ray observations of the γ-ray burst GRB 200415A, which has a rapid onset, very fast time variability, flat spectra and substantial sub-millisecond spectral evolution. These attributes match well with those expected for a giant flare from an extragalactic magnetar12, given that GRB 200415A is directionally associated13 with the galaxy NGC 253 (roughly 3.5 million parsecs away). The detection of three-megaelectronvolt photons provides evidence for the relativistic motion of the emitting plasma. Radiation from such rapidly moving gas around a rotating magnetar may have generated the rapid spectral evolution that we observe

    Carbon States in Carbon-Encapsulated Nickel Nanoparticles Studied by Means of X-Ray Absorption, Emission, and Photoelectron Spectroscopies

    Full text link
    Electronic structure of nickel nanoparticles encapsulated in carbon was characterized by photoelectron, X-ray absorption, and X-ray emission spectroscopies. Experimental spectra are compared with the density of states calculated in the frame of the density functional theory. The carbon shell of Ni nanoparticles has been found to be multilayer graphene with significant (about 6%) amount of Stone--Wales defects. Results of the experiments evidence protection of the metallic nanoparticles from the environmental degradation by providing a barrier against oxidation at least for two years. Exposure in air for 2 years leads to oxidation only of the carbon shell of Ni@C nanoparticles with coverage of functional groups.Comment: 16 pages, 6 figures, accepted in J. Phys. Chem.

    Towards a Runtime Comparison of Natural and Artificial Evolution

    Get PDF
    Evolutionary algorithms (EAs) form a popular optimisation paradigm inspired by natural evolution. In recent years the field of evolutionary computation has developed a rigorous analytical theory to analyse the runtimes of EAs on many illustrative problems. Here we apply this theory to a simple model of natural evolution. In the Strong Selection Weak Mutation (SSWM) evolutionary regime the time between occurrences of new mutations is much longer than the time it takes for a mutated genotype to take over the population. In this situation, the population only contains copies of one genotype and evolution can be modelled as a stochastic process evolving one genotype by means of mutation and selection between the resident and the mutated genotype. The probability of accepting the mutated genotype then depends on the change in fitness. We study this process, SSWM, from an algorithmic perspective, quantifying its expected optimisation time for various parameters and investigating differences to a similar evolutionary algorithm, the well-known (1+1) EA. We show that SSWM can have a moderate advantage over the (1+1) EA at crossing fitness valleys and study an example where SSWM outperforms the (1+1) EA by taking advantage of information on the fitness gradient

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Characterization of Notch1 Antibodies That Inhibit Signaling of Both Normal and Mutated Notch1 Receptors

    Get PDF
    Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD), and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR). The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50) values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL). In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell-penetrating gamma-secretase inhibitors.Antibodies that compete with Notch1 ligand binding or that bind to the negative regulatory region can act as potent inhibitors of Notch1 signaling. These antibodies may have clinical utility for conditions in which inhibition of signaling by wild-type Notch1 is desired, but are likely to be of limited value for treatment of T-ALLs associated with aberrant Notch1 activation
    corecore